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Preface

The eighth Summer Program of the Center for Turbulence Research took place in the
four-week period, July 2 to July 27, 2000. This was the largest CTR Summer Program

to date, involving forty participants from the U. S. and nine other countries. Twenty-
five Stanford and NASA-Ames staff members facilitated and contributed to most of the

Summer projects. Several new topical groups were formed, which reflects a broadening
of CTR's interests from conventional studies of turbulence to the use of turbulence anal-

ysis tools in applications such as optimization, nanofluidics, biology, astrophysical and

geophysical flows. CTR's main role continues to be in providing a forum for tile study
of turbulence and other multi-scale phenomena for engineering analysis. The impact of

the summer program in facilitating intellectual exchange among leading rescarchers in

turbulence and closely related flow physics fields is clearly reflected in the proceedings.

The development of the dynamic procedure at CTR has continued to generate renewed

interest in LES over the past decade. During the Program, new averaging strategies, new

equations and decompositions of the flow field using wavelets were evaluated and tested.

In addition, efforts continued in modeling the near wall turbulence, which remains a

pacing item, and in evaluating LES in predicting flow generated noise. The combustion

group continued to attract researchers from around the world. Work on the develop-
ment and assessment of combustion models was supplemented this year by a large efforts

on evaluating the use of LES in industrial applications. The Reynolds Averaged Navier

Stokes (RANS) modeling group continued its effort in developing models that capture
the effects of rotation and stratification on turbulence. The ability of RANS models to

predict transition was also evaluated. The program benefited from the infusion of novel
new ideas from deterministic and stochastic optimization for flow control. These ideas

were tested in optimizing microfluidic channels. A novel application of these optimiza-

tion techniques was the use of evolutionary algorithms in developing strategies for the
destruction of aircraft trailing vortices. The astrophysical group concentrated on proto-

planetary disk modeling and simulation. New ideas and transformations of the governing

equation promise new advances in this field in the near future. The geophysics group used

DNS to study sediment transport on a wavy wall and the propagation of internal waves

in the upper ocean thermocline. Finally, two new research topics were introduced to the
CTR summer program, Nanofluidics and biology. The biology work on the life cycle of

phytoplankton where turbulence plays a key role is a natural extension of CTR's exper-
tise. The work on Nanofluidics which is based on molecular dynamics is an outgrowth

of CTR's expertise in using advanced algorithms and large-scale simulations. Carbon
nanotubes in water and flow in a nanometer-scale channel were simulated during the

summer program.
As part of the Summer Program two review tutorials were given entitled: Geophysi-

cal Turbulence and its Visible Consequences for the Giant Gaseous Planets - i.e., How

Jupiter Earned its Stripes (Phillip Marcus), and Flamelet Modeling o.f Turbulent Re-

acting Flows (Heinz Pitsch); and two seminars entitled Molecular Dynamics Simulation

(Jonathan Freund), and Immersed Boundary Technique Jot RANS/LES Simulations (Gi-

anluca Iaccarino) were presented. A number of colleagues from universities, government

agencies, and industry attended the final presentations of the participants on July 27

and participated in the discussions.
There are twenty-nine papers in this volume grouped in six areas. Each group is pre-



cededwith anoverviewby its coordinator.Earlyreportingof elevenof the projects
occurredat the FiftiethMeetingof theDivisionof Fluid Dynamicsof theAmerican
PhysicalSocietyinWashington,D.C.,November19-21,2000.

Thisyear'sSummerProgramwasthelastfor DebraSpinks,theCenter'slong-term
administrativeassociate,whohasdoneanoutstandingjob of organizingthelastseven
programsandcompilingthecorrespondingreports.Sheshallbemissed,butcarrieswith
herourbestwishesforsuccessinhernewpositionat Stanford.

ParvizMoin
WilliamC.Reynolds

NagiN. Mansour
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The nanofluidics and biology group

The projects in this group draw on the considerable experience at CTR in using ad-

vanced algorithms and large-scale simulation used to analyze turlmlence related phenom-

ena. This group applied these capabilities to two new areas: nanofluidics and biological

flOWS.

Nanofluidics plays an important role in biodetectors, tribology, and diffusion through

porous media, and anywhere that non-continuum or discrete molecular effects play a sig-
nificant role. Two projects studied nanofluidics. Walther, Jaffe, Halicioglu, and Koumout-

sakos studied the interaction of water with carbon nanotubes, whose size and unique phys-

ical and electrical properties make them attractive building blocks for nanostructures.

They have been proposed as ultra-fine tips for atonfic force microscopes for probing com-

plex molecules and for use in bioseusors, both of which involve interactions with water.
Yet their interaction with water is not well understood. Atomistic simulations were used

to determine conditions for two nanotubes suspended in water to attract and to study

their general hydro-phobic/-phyllic properties.
Sinfilar atomistic simulation techniques were used by Freund to examine the details

of electro-osmotic flow in a nanometer-scale channel. In electro-osmosis, an applied elec-

tric field pulls counter ions distributed above a charge surface to induce a net flow.

This pumping mechanism is used in present-day micron-scale devices, often for biosensor

applicatiou. However, the flow is driven by a near-wall nanometer-scale layer which is

small enough to be studied atomistically. This project simulated the electro-osmotic flow

of a aqueous solution of C1- in a 50.}_ wide channel. Differences were found between

the present simulation results and standard theories that assume infinitesimal ions and

constant dielectric properties.
In addition to studies of these physical systems, considerable progress was made in de-

veloping and implementing efficient algorithms for atonfistic simulations. Walther, Jaffe,

Halicioglu, and Koumoutsakos discuss a new fornmlation of the paM method for com-

puting long-range electrostatic interactions. Freund and Darve implemented an efficient

paM algorithm for a 1/r 6 inter-atomic force potential which is being used in ongoing
surface tension research. Some of the computer codes used in these studies have also

been transferred to researchers in the Astrobiology Branch of NASA Ames for studying

molecular biophysics. Collaboration with this group is ongoing.

Ghosal, Rogers, and Wray examined the role of turbulence in the life cycle of phyto-

plankton, which affect global ecology and sustain oceanic food chains. In the short term,

phytoplankton impact people via the health of fisheries; in the long term, since their

carbon uptake counters carbon-dioxide emissions from the burning fossil fuels, their re-

sponse to increased carbon in the atmosphere and warmer seas will impact global climate.

Because many phytoplankton are non-swimming and actually sink, turbulence is essen-

tial in transporting them and maintaining healthy populations in the sunlit upper layers
of bodies of water. This project used population models in conjunction with simulation

data to study the role of turbulence in their population dynamics.

Jonathan Freund
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Molecular dynamics simulations of
carbon nanotubes in water

By J. H. Walther_, R. Jatfe:_, T. Halicioglu:_ AND P. Koumoutsakost¶

We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular

dynamics simulations. The energetics of the carbon-water interface are mainly dispersive
but in the present study augmented with a carbon quadrupole term acting on the charge
sites of the water. The simulations indicate that this contribution is negligible in terms

of modifying the structural properties of water at the interface.
Simulations of two carbon nanotubes in water display a wetting and drying of the

interstice between the nanotubes depending on their initial spacing. Thus, initial tube

spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 _t

remain wet during the course of the simulation.

Finally, we present a novel particle-particle-particle-mesh algorithm for hmg range

potentials which allows for general (curvilinea.r) meshes and "black-box" fast solvers by

adopting an influence matrix technique.

1. Introduction

The unique mechanical and electrical properties of carbon nanotubes (see Odom et al.

(2000)) have prompted an interest for technical application in a number of fields including
biosensors (Balavoine et al. (1999)), atomic force microscoI)y (.]arvis et al. (2000); Moloni

et al. (1999); Li et al. (1999)), and fuel storage (Wang & Johnson (1999); Rzepka et al.

(1998); Gordon & Saeger (1999); Lee & Lee (2000)). A key aspect of these applications
is the interaction of the surrounding fluid with the carbon nanotube and, in particular,

the hydrophobic/hydrophilic behavior of carbon nanotubes.
The graphite-water interface is known to be strongly hydrophobic (e.g. Miiller et al.

(1996)) and to exhibit a preferred orientation.of the water dipole moment parallel to the
interface (Ulberg & Gubbins (1995), Allen et al. (1999), and Shevade et al. (1999)).
Most of the studies on graphite-water systems have involved planar interfaces or idealized

geometries (Wallqvist & Berne (1995)). The presence of an electrostatic quadrupole mo-
ment interaction between graphite and water as proposed by Vernov & Steele (1992) and

subsequently measured by Whitehouse & Buckingham (1993) has mostly been neglected

in the previous studies. Markovid et al. (1999, 2000) included the quadrupole interaction
in their numerical study of water scattering from a graphite surface, but did not provide

information of the importance of this term. Thus, to study the structural properties of

water surrounding a carbon nanotube, we perform detailed molecular dynamics simula-
tions of a 12.52/_ diameter carbon nanotube with chirality (16, 0) in water (see Fig. 1)

using Morse harmonic bond potentials and Lennard-Jones potentials to model the car-
bon nanotube and the flexible model for water by Teteman et al. (1987). We include

Inst. of Computational Sciences, ETH Ziirich, Switzerland
:_ NASA Ames Research Center, USA
¶ also at Center for Turbulence Research, NASA Ames/Stanford Univ.
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FIGURE 1. Sketch of the carbon nanotut)e.

and compare the effect of the electrostatic quadrupole as suggested in \:ernov & Steele
(1992).

Another important issue related to the carbon-water interface is the wetting and drying
of the interstices in a bundle of carbon nanotubes. The drying can lead to hydrophobic
aggregation of the tubes (Lure et al. (1999)), changing the mechanical and electrostatic

properties of the system. Thus, in the second part of the study, we consider two carbon

nanotubes in water initially aligned and with an initial spacing So between the carbon
nanotube walls.

2. Governing equations and solution procedure

The carbon nanotube-water system is modeled using classical molecular dvnamics

sitnulations in the micro canonical (NVE) ensemble. The governing Newton's equations

are integrated in time using the leap frog scheme (Allen & Tildesley (1987)) sul).j(wt to
periodic boundary conditions.

The water is described by' the flexible (TJE) water model of Teleman et al. (1987)
Daturing harmonic bonds between the oxygen and hydrogen sites, which also hohts the
partial charges.

The restrictions imposed on the time integrator by the eigen-fiequencv of water of the

order of 3500cm -_ (Dang & Pettitt (1987)) are not too severe since tt;e highest eigen-

frequency of the carbon nanotube is of the order of 1500 cm -_ (Saito et al. (1998)). Thus,

a time step of (it = 0.2 fs proved sufficient for stability and conservation of energy and
has been used throughout.

2.1. Potentials

2.1.1. Carbon nanotube

The carbon nanotube is modeled by a Morse bond, a harmonic cosine angle, and a
2-fold torsion potential as

1K 1K ,
U(rij'Oijk'¢ijkl) = I(cr({iJ -- 1)2 + 2 Co(COSOij k -- cosOc) 2 + _ CO (1 - cos20ijkt)

where (2.1)

{ia = e -_(r'i-_c), (2.2)

and 00_ and ¢iim represent all the possible bending and torsion angles, and r 0 represents
all the distances between bonded atoms. Kc, Koo, and K¢0 are the force constants of

the bond, angle, and torsion potentials, respectively, and re, Oc, and ¢0 are the corre-

sponding reference geometry parameters for graphene. The Morse and angle parameters
given by Guo et al. (1991) and Tuzun et al. (1996) are listed in Table 1.
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KCT = 478.9kJmol-lA 2 rc = 1.418
Kco = 562.2kJmol-I 0c = 120.00 °

Key = 25.12kJmo1-1 7 = 2.1867A-a
ecc = 0.4396kJmo1-1 ace = 3.851A

TABLE 1. Parameters for the carbon interaction potentials (Tuzur et al. (1996) and Rapp6 et al.
(1992)). Kcr, re, and _ are the parameters for the Morse potential, Kco and Oc are tile angle
parameters, and Kc_, is the torsion parameter, ec'c and ace are tile Lennard-Jones parameters
for the carbon-carbon interaction.

The Morse bond and angle terms maintain the C-C bond length and hexagonal ring
structure of the carbon nanotube, and the torsion term is needed to provide a measure of

the strain due to curvature of the reference graphene sheet. This curvature strain prevents

collapse of the nanotobe and imparts stiffness with respect to bending deformations. To

obtain a physically reasonable torsion parameter, quantum chemistry calculations were

carried out for planar and curved tetracene (C1sH12), which consists of 4 hexagonal rings

fused together in a strip-like part of the circumference of a zigzag carbon nanotube. The

calculations were carried out. using the Gaussian98 software package (Frisch et al. (1998)).

Tetracene is planar with a 9.778_ separation between the C-C bonds on opposite ends

of the molecule. If the tetracene molecule were extracted from a (16,0) nanotube and

held rigid such that end-to-end separation would be 8.795 Jr. Quantum chemistry calcu-

lations were carried out using density functional theory (DFT) with the hybrid nonlocal

B3LYP functional (Becke (1993)) as implemented in the Gaussian98 software package.

For each amount of curvature, the molecular geometry was completely optimized except

for the end-to-end distance constraint. The energy difference between the curved and

planar tetracene molecules (At?7c,,_) was determined to be 71.11 kJ mol-lusing the stan-

dard 6-31G(d) contracted Gaussian atomic orbital basis set. The curvatures considered

were appropriate for (n, 0) nanotubes with n = 12, 24. The torsion parameter Kc¢ was
determined from

-1/84\

Key =2AE .... {_21 - cos 20,) ,
(2.3)

with the summation over the complete set of 84 torsion angles in the optimized curved

tetracene molecule (4 for each C-C bond). For all cases studied, Kco was between 24.60
and 25.25kJ tool -1. The value of 25.12kJ mol-lwas selected for the present study.

A Lennard-Jones term is furthermore added to account for the steric and van der

Waals carbon-carbon interaction

U(r,j) = 4eve [\ rij J \ rij ] "

where ecc and ace are obtained from the UFF force field (Rappfi et al. (1992)), see
Table 1.

The bond potentials can be efficiently computed on scalar and vector architectures,

in the latter case by rearranging the list of carbon bonds to secure vectorization. The

non-bond Lennard-Jones potential is computed using a standard cell index table and

spherical truncation.
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Kwr = 4637kJmol-lA 2 rw = 1.0A
I(wo = 383kJmol-lrad 2 0w = 109.47 °
_oo = 0.65017kJmo| -a ooo = 3.166A
qo = -0.82e qH = 0.41c

TABLE 2. Parameters for the flexible (TJE) water model (Teleman et al. (1987)).

U(r,j) = 4_oo

and a Coulomb potential

2.1.2. Water model

The flexible water model is described by harmonic bonds between the hydrogen-oxygen
sites as

1 1

U(rij, Oijk) = -_Kw_(rij - rw)2 + 2Kwo (Oijk - Ow) 2, (2.5)

where/_'w_ and Kw0 are the parameters of the potential and rw -- 1.0 A the reference

bond length and angle Ow = 109.47 ° in (Teleman et al. (1987)).
Non-bonded interactions between the water molecules involve a Lennard-Joncs term

between the oxygen atoms

0"00_ 12 (0"00_ 6] (2._)

1 qiqj (2.7)
U(rij) - 47reo rij '

where eo is the permittivity in vacuum, and qi is the partial charge, qo = -{}.82 and

qH = 0.41, respectively (Teleman et al. (1987)). The Coulomb interaction is conqmted

using a smooth truncation as

47reo \ rij

where Es(rij) is a smoothing function

qiqj
E_(rij) - qiqj (r u -r_) -27 , (2.9)

rc r c

and rc the radius of truncation (Levitt et al. (1997)). The truncation of the Coulomb

potential has been shown to have little effect on the thermodynamic and structural

properties of water for cutoffs larger than 6A (Andrea et al. (1984)), and in this study

we employ a value of 9.50._ (3aoo) The parameters of the potential are summarized in
Table 2.

Alternatively, the Coulomb potential can be computed without truncation using the

p3M algorithm as described in Section 4.

2.1.3. Carbon-water interaction

The carbon-water interaction consists of a Lennard-Jones term between the carbon

and oxygen sites

[(_c°_12-(_c°_ 6] (2.10)
U(rij) = 4eco L\ rij ] ro J '
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FIGURE 2. Sketch of the carbon nanotube-water system. R is the radius of the carbon nanotube,

and D the water dipole moment. (x r, y') is the local co-ordinate system used in the calculation

of the quadrupole interactions. The orientation of the water molecules is given in terms of the

angles _ and _p. The dashed box indicates the position of the periodic boundary.

where parameters of the potential eco and _rco are obtained from Vernov & Steele

(1992), and a quadrupole interaction between the carbon atoms and the partial charges
on the water hydrogen and oxygen atoms

1 q _ 3r_rs_ - r2_Z (2.11)
U(r_, rz) - 3 47re0 Z O_,Z r._ ,

a,_

where a,/3 run over all Cartesian co-ordinates x, y, z, and r is the distance between the

charge site and the quadrupole carbon site. 5_z is the delta function, and O_,z is the
quadrupole moment tensor (Hansen & Bruch (1995)).

In the present study, we evaluate Eq. (2.11) in a local co-ordinate system (x', y', z/)
centered at the quadrupole site, see Fig. 2. If x' is the wall normal direction we have

0_ = -20,ju = -20.:, (2.12)

with all other components equal to zero (see Hansen & Bruch (1995)). The quadrupole
interaction is truncated at r = rc, where rc is tile cutoff radius of the Lennard-Jones and

Coulomb potentials. Note that the effect of the quadrupole moment is an attraction of

positive charge (hydrogen) towards the nanotube wall and conversely a repulsion of neg-

ative charge (oxygen). The parameters for the carbon-water potentials are summarized
in Table 3.

2.2. Simulation details

The water molecules are initially placed on a regular lattice, and the system is equilibrated
to obtain the desired temperature and bulk density of the water. The equilibration is

divided into two parts for the cases involving two carbon nanotubes. In the first part, the

nanotubes are held at a fixed position ("frozen") in order to allow the water molecules
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eco = 0.3126kJm ol-t aco = 3.19,2k ®_,j = 3.03 x 10-4°Cm 2

TABLE 3. Parameters for the carbon-water interaction potentials, (see Vernov & Steele (1992)
and Whitehouse & Buckingham (1993)).

to "settle" between the tubes. The carbon nanotubes are released in the second part

of the equilibration which involves thermal equilibration and are free to move during
the remainder of the simulation. The temperature control is performed by scaling the

velocity of the atoms every 500 time steps (every 0.1 ps) and is switched off after tile

equilibration at 4 ps.
The volume of the computational box is adjusted to match the target density of water

in the far-field. The regulation of the volume is performed by re-positioning the periodic

boundary in the x - y plane (see Fig. 2) while keeping the extent of the box in the z-

direction fixed. This procedure prevents any deformation of tile carbon nanotube during

the volume adjustment.

3. Results

The molecular dynamics simulations involve single and a pair of carbon nanotubes

in water at a temperature of 300K and a bulk water density of po = 997kgm -:_. The

carbon nanotube is a (16, 0) nanotube with a radius (R) in vacuum of 6.26,_, and the

length of the computational box (L) is 8.6R (53.8 A).
The results are presented in terms of radial density and t)rol)at)ility density profiles

of the orientation of the water dipole moment (P(cos _)) and the orientation of the Ott

bonds (P(cos_,)) (see Fig. 2) where

P(cosv_) = < cos_ >_ +1 P(cos_p) = < cos6' >,. +1 (3.1)
2 ' 2 '

and < ... >r denotes the average value at the position r. Notice that cos F = +1 indicates

a direction along the outward surface normal, cos _ = 0 a direction parallel to the normal,

and cos _ = - 1 a direction in the negative surface normal. The profiles are sampled ewwy
20 fs in 30 bins of constant volume extending from the surface of the nanotube.

Studies of bulk water and water with a free surface (slab) are provided as a reference.

The average potential energies of the bulk are found in good agreement with previous

studies using the same TJE water model by Teleman et al. (1987) (TJE), Wallqvist &

Teleman (1991) (WT), and Mizan et al. (1994) (MSZ), see Table 4.

3.1. Single carbon nanotube

To study the influence of the quadrupole moment on the structural properties of water
at the carbon-water interface, we have conducted simulations of one carbon nanotube in
water. The nanotube consists of 832 carbon atoms and the water consists of 2088 water

molecules. The system is equilibrated until the energetics settle around 4 ps, and the

statistics are collected every 20 fs until t = 40 ps, a total of 1800 samples. Tile numerical

parameters are summarized in Table 5.
The simulations of both one and two carbon nanotubes in water revealed damped

oscillations of the potential energy of the carbon-carbon Lennard-Jones interaction with
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TJE WT MSZ present work

Bond length (_) 1.016 1.017 1.016 1.017

Bond angle (degree) 104.9 104.9 104.9 104.9

Dipole (D) 2.43 2.44 2.43 2.44

Uinter (kJ tool-l) -45.3 -47.5 -47.3 -48.2

Uintra (kJmo1-1) 5.1 6.3 6.3 6.2

Upot (kJmo1-1) 40.1 -40.7 -41.0 -41.9

TABLE 4. Comparison of present bulk properties with the results of Teleman et al. (1987)

(TJE), Wallqvist & Teleman (1991) (WT), and Mizan et al. (1994) (MSZ).

Case QP Nw Nc t,_(ps) type
1 no 2088 832 39 SCN

2 yes 2088 832 39 SCN
3 - 729 0 62 bulk

4 - 729 0 slab

5 - 832 39 vacuum

TABLE 5. Simulation cases for a single carbon nanotube (SCN), bulk and slab simulations, and

a carbon nanotubes in vacuum. Nw is the number of water molecules, Nc is the number o[

carbon atoms, and tm is the total simulation time.

a frequency in the range of 200 cm -1. A separate simulation of one carbon nanotube

in vacuum was prepared to estimate the eigen-frequencies of the tube, in particular the

breathing frequency Ag (the first radial mode) of the tube. Monitoring the potential en-

ergy of the carbon-carbon Lennard-Jones interaction revealed a frequency of 173 cm -1 in

good agreement with the theoretical value of 180 cm -1 (Saito et al. (1998)). The corre-

lation between the carbon-carbon Lennard-Jones energy and the motion of the tube was

verified in a separate simulation in vacuum in which radial oscillations where specifically

imposed (not shown).

The radial density profiles of hydrogen and oxygen are shown in Fig. 3a and 3b for

the cases excluding and including the quadrupole moment. The maxima of the oxygen

and hydrogen profiles nearly coincide near the interface, indicating that the plane of the

water molecules is parallel to the interface. These profiles are markedly different from

those of the liquid-vapor interface (see Fig. 4), exhibiting a characteristic layering and a

presence of hydrogen atoms beyond the extent of the oxygen atoms (at r/R < 1.4).

The density profiles are, in general, in good agreement with the study of Wallqvist

(1990) for polarizable water in contact with a smooth wall and with grand canonical

Monte Carlo simulations of water adsorption in graphite pores by Ulberg & Gubbins

(1995).
The orientation of the water molecules at the carbon-water interface is inferred from

the orientation of the water dipole moment as shown in Fig. 5. The water molecules in

the closest proximity of the nanotube (r/R = 1.47 - 1.55) display a small inclination of

4 ° towards the nanotube and turn to 74 ° (an inclination of 16 ° towards the bulk) at

the point of minimum density (r/R = 1.71 - 1.78). The bulk properties are reached at
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FIGURE 3. Water radial density profile. The arrows indicate the location of tile bins used in tile

dipole orientation. (a) excluding the quadrupole moment; (b) including the quadrupole moment.
-+-: oxygen density profile; -x-: hydrogen density profile.
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FIGURE 5. Dipole orientation at different distances front the carbon nanotube wall. (a) without

the quadrupole moment; (b) with the quadrupole moinent. -+-: r/It = 1.47; -x -: r/It = 1.55;
-* : r/R= 1.71; -D-: r/R = 1.78;-_ : r/It=2.45.

r/R >_ 2.4. These results are in good agreement with the work of Wallqvist (1990) and

with the study of (ST2) water between hydrophobic surfaces by Lee et al. (1984).

Finally, we consider the orientation of the OH bonds as shown in Fig. 6. At r/R = 1.47

the OH bonds are directed towards the nanotube with an angle of _ 4 °, indicating that
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FIGURE 6. Orientation of the OH bonds at different distances from the carbon nanotube wall.

(a) without the quadrupole moment; (b) with the quadrupole moment. -+- : r/R = 1.47;
-x- : r/R = 1.55; -*- : r/R = 1.71; -H- : r/R = 1.78; -"- : r/R = 2.45.

FIGURE 7. Snapshot of the atoms for the simulation of a single carbon nanotube in water. The

interaction potentials include an electrostatic quadrupole moment (case 2).

the HOH plane is nearly parallel to the interface. A bimodal profile is observed for

r/R < 1.55 with a high probability at 101 °, 117 °, and 123 ° for r/R = 1, 71, 1.78, and
2.45, respectively. From these structural properties of water, we conclude that the effect

of the quadrupole moment on the density and dipole moment profiles is clearly small,

but it appears to increase the probability of the extrema of the OII orientation. However,
since the contribution from the quadrupole moment to the total carbon-water energetics

is of the order of 0.1%, further studies are being conducted to confirm these findings.

A snapshot from the simulation including the quadrupole moment (case 2) is shown in

Fig. 7. One can see a large number of hydro atoms on the nanotube side of the interfacial

layer

3.2. Twin carbon nanotubes

The second part of the study involves two carbon nanotube in water, with each tube

consisting of 832 atoms and a total of 4536 water molecules present. Four simulations
have been performed, including three different initial tube spacings (So = 7, 8, and 9/_),

and a sensitivity study has been conducted to determine the influence of the equilibration

procedure. The number of water molecules and their initial positions are identical for each
simulation, and only the initial spacing of the nanotubes is varied. The simulations are

performed in the canonical ensemble, heating the system every 500 time steps (every
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(a) (b)

FIGURE 8. Snapshots of the water nlolecules after equilibration at 2ps. (a): initial tube spacing
of 7A (case 6); (b): initial tube spacing of 8,_. (case 7).

Case tf/(it th/(it So(A) Nw N6.
6 10000 500 7.0 4536 1664
7 10000 500 8.0 4536 1664
8 10000 500 9.0 4536 1664
9 50000 500 7.0 4536 1664

TABLE 6. Simulation cases for a two carbon nanotubes. (it is the time step size, t I the "freezing"
time of tile carbon nanotubes, 1/th the heating frequency, ,So the initial distance between the
nanotube walls, Nw the number of water molecules, and Nc the number of carbon atoms.

0.1 ps), but simulations in the micro canonical ensemble gave similar results (not shown).

The equilibrated systems are shown in Fig. 8 for the two cases with all initial spacing of
7._t and 8 4, respectively. The numerical parameters are listed in Table 6.

The time history of the separation S(t) between the carbon nanotubes is shown in

Fig. 9 for the four cases. The simulation involving an initial tube spacing of 7.& exhibits

a decrease in spacing when the tubes are "released" after 10,000 time steps (2 ps). The

spacing reaches a plateau of 5.8._ at 4ps but continues to decrease after 10ps and
reaches an equilibrium spacing of 3.49 + 0.06A at 17ps. This "drying" of the interface

is in agreement with the studies on stacked plates by Wallqvist & Berne (1995), who

showed that stable configurations of water in a hydrophobic environment requires the
presence of two or more layers of water. Indeed, the level of the plateau coincides with

the thickness of one layer of water _ 2aoo = 6.3 4. The position of the atoms during
the drying is shown in Fig. 10.

An additional simulation was conducted to study tile effect of tile duration of the initial

"freezing" of the nanotube. The equilibration was extended to 10 ps (case 9), but with a
persistent drying of the interface cf. Fig. 9.

A similar time history is observed for the nanotube starting from an initial spacing
of 8A. The plateau is reached after 7ps, and the tube spacing decreases rapidly after
9-10ps to reach the equilibrium distance after 12ps.

Finally, the nanotubes placed with an initial spacing of 9 A (case 8) remain wetted
during the simulation cf. Fig. 9. This spacing is consistent with the thickness of two

water layers of 9.2 - 10.2 A depending on the staggering of the carbon-oxygen system.



Carbon nanotubes in water 15

10

6

5

I I I I I I I

3 S 10 15 20 25 30 35 40 45 SO

t (ps)

FIGURE 9. Time history of the spacing between two carbon nanotubes in water. + : Case 6;
-O-: Case 7; -x-: Case 8; -*-: Case 9.

4. p3M algorithm

The smooth truncation of long range potentials (eg. the Coulomb potential) is a viable

approach for homogeneous systems ie. where the system is locally neutral _i qi = 0

(where qi is the "generalized charge" or the strength of the particle). In molecular dy-
namics simulations neutral systems are often assumed, whereas such an assumption is

invalid in astrophysics (where q_ corresponds to mass) and in fluid dynamics (where qi

corresponds to circulation or vorticity). For these problems and for sinmlations requiring

higher accuracy than warranted by the smooth truncation, the Particle-Particle-Particle-
Mesh algorithm (p3M) is an efficient alternative. The algorithm gains it efficiency by em-

ploying fast Fourier transforms on a regular mesh for the solution of the Poisson equation

for the electrostatic potential (_)

V2 ¢ _ p (4.1)
£0

where p is the charge density and its accuracy by a local particle-particle correction to
resolve any sub-grid scales not properly resolved by Eq. (4.1). Sub-grid scale are present

if the projected charge density is a smooth approximation to the true charge density,
which is normally the case in molecular dynamics simulation, but not the case in particle

(vortex) methods. The original method by Hockney & Eastwood (1988) proceeds as

follows:
. Project the particle charge onto the mesh to obtain the charge density (p).

• Solve Eq. (4.1) for the electrostatic potential (_).

• Compute the electrostatic field on the mesh as E = -_7¢.
• Project the electrostatic field onto the particles and compute the resolved particle

force as: f i = qiE(xi).
• Compute the sub-grid scale forces as a local particle-particle correction, C(rij).

• The total particle force is jfp = fp + C, where C is the total sub-grid force.
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FIGURE 10. Snapshot of the water molecules during the drying process for case 7 at t = 12, 14,
16, and 18, ps (a-d), respectively.
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b)

FIGURE 11. Snapshot of the water molecules during wetting (case 8) at t = 18ps.

The success of the Hockney &: Eastwood (1988) algorithm is based on an inversion of
the Poisson equation

• (x) = / G(x - y). pdy, (4.2)

where G is the Green's function to _72. The convolution (4.2) is conlputed in Fourier

space employing an optimized Green's function (_) = Oovt * _) to secure a prescribed
and isotropic sub-grid scale ie. C(xi - xj) = C(rij), where rij = Ixi - xjl.

An alternative p3M algorithm proposed by Theuns (1994) estimates the resolved

(anisotropic) electrostatic potential from the projected charge density by computing the
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FIGURE 12. Comparison between the P3M forces and the exact force for two particles in a
periodic domain. The different curves in (a) demonstrate the effect of the cutoff radius (re) of
the particle-particle correction. -+-: rc/h = 1; -x-: rc/h = 2; -l::]-: rc/h = 3. (b) shows the
error on a test particle displaced from a group of 104 particles centered in the computational
domain.

convolution in real space as

h3 M

. xi - xj (4.3)

where h is the mesh spacing and M is the number of mesh points involved in the project

step. The algorithm proceeds by subtracting this estimate for the resolved field for par-
ticles in close proximity, and the corresponding local particle-particle correction is the

exact 1/r relation.

The present algorithm replaces the approximate convolution in real space (4.3) by an
influence matrix technique as

Sh h h (4.4)---- ]_ijJ'_j ,

where 3dihj is the influence matrix describing the electrostatic field E/h at the i-th grid

point as induced by the charge density 7_) at the j-th grid point. The size of the vectors

gih and 7_ is governed by the number of mesh points involved in the projection and the

number of nearest grid points included in the particle-particle correction. The algorithm
is described in more detail in (Walther & Koumoutsakos (2000)).

To demonstrate the accuracy of the present PaM algorithm, we consider the electro-

static force between two charged particles in a periodic domain and study the errors for

different particle spacings and for different cutoff distances (rc) for the particle-particle

correction. The difference between the p3M force and the value compute by direct sum-

mation over a large number of images is shown in Fig. 12a. The present paM algorithm

is exact for the particle within the cutoff and is dominated by the inherent errors on the

mesh. In the present case, the errors are of the order of 30%, 10%, and 5%, for rc/h = 1,

2 and 3, respectively.

A second test case involves 104 charged particles uniformly distributed at the center of

the domain, and we consider the error of the force on a test particle at different distance

from the group (see Fig. 12b). For this case, the maximum error is of the order of 2% for
rc/h = 3.
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5. Summary and conclusions

We have presented molecular dynamics simulations of the hydrophobic/hydrophilic
nature of carbon nanotubes in water. Using a detailed description of the carbon nan-

otube and classical potentials for the carbon-water interaction including an electrostatic

(luadrupolc moment acting between the carbon atoms and the charge sites on the wa-

ter, we find structural properties of water similar to those found for water at a idealized

graphite surface. However, in the present case, the water is slightly inclined with an angle
of _ 4° at the interface with a preferred orientation of the water dipole moment and OH

bonds pointing towards the carbon nanotube. The quadrupole moment has a negligible

contribution to the density and water dipole moment, but it appears to intensify the

t)robability distribution of the orientation of the OH bonds. Further studies are being
conducted to confirm these results.

Molecular dyi_amics sinmlations of two carbon nanotubes in water have revealed a

continuous "wetting" or a "drying" of the interstice between the tubes depending on their

initial spacing. For the present carbon nanotubes with a chirality of (16, 0) (diameter of

12.52.J_), tube spacings of 7 and 8_ resulted in a drying of the interstice whereas an

initial spacing of 9 it resulted in a permanent wetting. These results are in agreement

with earlier studies of stacked plates by Wallqvist & Berne (1995) which indicate that

stable configurations of water in a hydrophobic environment require the presence of two or

more water layers. We are currently in the process of analyzing these results to determine

the driving mechanisms of the drying process.
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An atomistic simulation of an electro-osmostic flow in a 50A wide channel is performed to

examine models for such flows and study its physical details. The working fluid considered

is a 1.1M mean concentration solution of C1- in water. For simplicity and computational

efficiency, only negatively charged ions are in the solution. The water is modeled by the

SPC/E potential, and the C1- are modeled as point charges plus an established Lennard-

Jones potential. The channel walls are fixed lattices of positively charged Lennard-Jones
atoms. An aperiodic implementation of the paM algorithm is used to compute electro-

static interactions. The distribution of Cl- adjacent to the charged walls differs somewhat

from theoretical predictions that assume infinitesimal ions and constant electric permit-

tivity, and this second assumption is called into question because it is found that the
waters near the wall are preferentially oriented by the local electric field, which will alter

their dielectric properties. When an electric field is applied parallel to the channel walls,

a velocity profile develops that is consistent, with a monolayer thick Stern layer fixed to

the channel walls.

1. Introduction

Where an electrolyte fluid contacts a solid surface, it is common that the surface

becomes charged with counter ions preferentially distributed above it in a thin layer

(see Fig. 1). This layer of fluid that has a net charge is called the electric double layer,
and the ion density within it is typically modeled by a Boltzmann distribution. To ease

computational expense in the present study we only have counter ions in the fluid, so

the ion number density is simply

n(v) = hoe -e_'(y)/k'_, (1.1)

where T is the temperature of the fluid (assumed uniform), kB is the Boltzmann constant,

e is the elementary charge (positive), and _ is the local electric potential which is a

function of the wall coordinate y. If we choose the mid-channel potential _b(h/2) = 0,

then no is the ion concentration at mid-channel. The electric potential in (1.1) satisfies

the Poisson-Boltzmann equation

d2_) en(y) _ _ en___2_Oe-e_(_)/k,T' (1.2)

dy 2 CEo Cgo

where co is the permittivity of a vacuum and z (assumed constant) parameterizes the

dielectric behavior of the fluid. We have assumed monovalent ions. The solution of (1.2)

Mechanical and Aerospace Engineering, University of California, Los Angeles
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Electric Field

FI(;URE 1. Schematic of the electric double layer in a nanometer-scale channel. For simplicity
both this schematic and the present simulations only have counter ions in the solution. Two
dimensions of the sinmlated chanm,1 are labeled. It also extends 49,_ in the z-direction.

is (Israelachvili (1992))

_,(y) : kB-----T-Tlog(cos" Ky), (1.3)
e

where

,)

K 2 e'no
2GCokB2 q" (1.4)

Overall electro-neutrality gives a boundary conditions on _ in terms of the wall charge
density Qo,

Qo _ Cgo dtj walls@ , (1.s)

which can be used to determine no. Models have been developed to account for variable

permittivity of the medium and variable viscosity (Dukhin & Derjaguin (1974)), but

in this initial effort we focus on models that assume constant c. smooth walls, and
infinitesimal ions.

Typically, the ions nearest the wall are assmned to be bound to the surface in the

so-called the Stern layer. Beyond the Stern layer is the diffuse layer which is potentially

mobile. When there is flow, these two regions are usually assumed to be separated by a

shear plane, but since the Stern layer may be only a few atoms thick, it is not clear that

this continuum view strictly applies. The dynamics of this near-wall region are important

for electro-osmosis, an electrokinetic process by which fluid is drawn through the channel

by an applied electric field which exerts a body force on the fluid wherever it has net

charge. This process is used to pump fluid in microfluidic devices (e.g. Herr et al. (2000))

and move fluid through porous material and clays (e.g. Coelho et al. (1996)). Electro-

osmosis is also used in conjunction with theories similar to the one presented above to

deduce the ('-potential, the constant electric potential at, the supposed shear plane, so

the correctness of these models is also imt)ortant for making these measurements.

Unfortunately, the small scales involved make it difficult to test electro-osmosis mod-

els in detail. For this reason we have developed the capability of simulating the process

atomistically. This approach is, of course, limited to channels and pores that are signifi-
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Interaction A (J _12) C (J/it6) e (J) a (A) ro (£)
O-O 4.37 x 10 -15 4.35 x 10 -is 1.08 x 10 -21 3.17 3.55
CI-O 6.75 x 10 -14 1.03 x 10 -17 3.93 x 10 -22 4.33 4.86
C1-C1 1.81 x 10 -13 2.43 x 10 -1_ 8.16 × 10-22 4.42 4.96
W-O 5.00 x 10 -15 5.44 × 10-is 1.48 x 10 -21 3.12 3.50
W-C1 7.72 x 10 -14 1.29 x 10 -17 5.38 x 10 -22 4.26 4.78

TABLE 1. All parameters for the Lennaxd-Jones potential. For convenience, two equivalent forms
are given: U(r) = A/r 12 - C/r 6 and U(r) = 4e(a12/r 12 - a6/r6) . The final column list ro, the
separation distance corresponding to zero force. All Lennard-Jones potentials were cut off and
shifted (FrenkeI &: Smit (1996)) at the standard rc = 2.5a.

cantly smaller than in present-day manufactured devices, but in many cases the double

layers are of nanometer scale and can, therefore, be studied directly by atomistic sim-
ulation. This report discusses initial results of this effort. We focus on ion-laden water
flow in between idealized surfaces made up of atoms all having the same charge. The in-

teratomic potentials are modeled with established empirical models which are discussed

in §2. This section also discusses the numerical methods, the flow parameters, and the
simulation procedure. Section 3 presents results for simulated double layers and makes

some comparisons with theoretical predictions. A brief summary is provided in §4.

2. Atomistic simulations

2.1. Physical model

The waters were modeled using the fixed bond length SPC/E model of Berendsen et al.

(1987) , which represents hydrogens and oxygens as point charges (qH = +0.4258e and

qo = -0.8476). The oxygens also interact with other atoms by a Lennard-Jones potential.
Tests in a nanometer-scale Couette flow showed that the SPC/E model predicted the

viscosity of water at T = 300K to within 10 percent of the accepted value. The C1-

were modeled using the parameters of Chandrasekhar et al. (1984), and the walls are

modeled by fixed square arrays of Lennard-Jones atoms. Parameters for all Lennard-

Jones interactions are given in table 1.

2.2. Numerical method

A standard velocity Verlet algorithm (Prenkel & Smit (1996)) was used to integrate

Newton's equation of motion with a numerical time step of lfs. Lennard-Jones interac-

tions were computed point-to-point using a cutoff of 2.5a; Coulomb interactions were

computed using an aperiodic implementation (Pollock & Glosli (1996)) of the a p3M

algorithm (Hockney & Eastood (1988)). The mesh for the Poisson solver in the p3M
method had 48 x 128 x 48 points in x, y, and z, respectively, with the same uniform

mesh spacing in all three coordinate directions. The 128 mesh points in the y-direction

extended over twice the height of the channel and were used to remove the periodicity

(Pollock & Glosli (1996)). In our implementation, the point-to-point and mesh portions
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of the potential were split using the standard EwaM decomposition,

1 qiq.i ( 2ae-d"l"'Jl2 erfc(c_lxij] ) _ x 0
Fi =-2 E _ \ V_]Xisl _ J lxij]

i#j
N

1ZZ qiq_e-_ine"_'x,J
2 L3_;2e o '

k¢0 j=l

(2,1)

where qi is the charge and xi is the position of the ith atom, and t_ is a wavenumber vector.

The first term in (2.1) was computed using a cutoff of 2.75a, and the second term was

computed on the mesh using fast Fourier transforms. The c_ parameter, which regulates
the relative contrilmtions fl'om the two sums, was set based on numerical experimentation

to be (_ = 0.262.2k -1. A matrix constraint method was used to fix the bond lengths of the

waters as specified by the SPC/E model.

2.3. Flow parameters

The channel dimensions are shown in Fig. 1. The L_ = L: = 49,_t dimensions given
in the figure are the periodicity lengths of the domain in x and z. The given channel

height, Lu = 503,, is measured between the centers of the wall atoms. The wall charge

density was Qo = 0.24C/m 2, which is equivalent to 0.184e per wall atom. This high

but physically realizable wall charge was selected in this initial study because it gives a

relatively large number of counter ions in the fluid and thus provides a good statistical

sample within a reasonable computational time. Still, there were only 72 chloride atoms
dissolved in the 3,600 waters in the chmmel. Each wall was constructed from 196 atoms.

These charges and numbers are such that the overall system was neutral.

The applied electric field ac|ed on the CI- in the :c-direction with FE = 1.12 x 10-11N.

For reference, this is the same force that would be exerted by a point charge 45.3_ away.

The energy of this analogous point-charge/point-charge interaction is 12.25kBT.

2.4. Simulation procedure

To equilibrate the ion distributions, an initial simulation was run with only 2816 atoms,
one quarter the eventual number. It was initialized with an approximately uniform dis-

tribution of CI- and was run for 1 million time steps to obtain a statistically stationary

distribution. At this point the domain was doubled in both the x- and z-directions by

adding periodic images. When this was done, all atomic positions were perturbed with

uniformly distributed random displacements with peak 10-3A. Because the system is

Lyaponov unstable, this small randomization rapidly broke the symmetries. Eight dif-

ferent randomized atomic positions were used as initial conditions for eight separate
ensembles that were run simultaneously on different computers to accumulate statistics.

For each ensemble, 50,000 time steps were computed to re-equilibrate and allow the dif-
ferent ensembles to develop away fl'om their similar initial conditions. This was followed

by 250,000 time steps to gather statistics.

A Berendsen thermostat was used to counter viscous heating and a small temperature

drift associated with the P3M scheme which is accurate but not exactly energy conserving.
Velocities were rescaled as

vi = Xvi (2.2)
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FIGURE 2. Mean temperature. On this and all plots, y = 0 corresponds to the centers of the

atoms that constitute the low wall.

where

X= 1--- -1 , (2.3)
r

and T is the temperature, At is the numerical time step (lfs), Tt._r is the target temper-

ature (300K), and r is a parameter to regulate the strength of the rescaling. Solutions
were shown to be insensitive to the value of r. The mean scaling factor was nearly

unity: 2 = 1 + 4 x 10 -7. Its greater-than-one value indicates that the numerical energy

drift was negative for this flow. Since the instantaneous )_ was rarely out of the range
0.9995 < X < 1.0005, it did not alter the dynamics significantly. A difficulty arises in

applying thermostats when there is a mean flow because the mean flow must be known

a priori for its kinetic energy to be distinguishable from thermal kinetic energy. The

problem is that the mean is not available until the simulation has run long enough to

compute it. Nevertheless, it was found in the present case that results were insensitive to

the parabolic flow profile used to estimate the relative contributions, which is no surprise
since the mean flow has a peak of approximately 5m/st and thus constitutes only a tiny

fraction of the total kinetic energy of the particles. Ideally, one should remove heat via
the walls as in a real channel as done for simple Lennard-Jones fluids by Travis & Gub-

bins (2000) to avoid any unphysical artifacts associated with the thermostat, but this

approach does not provide a rigid control of the temperature in the channel. We also note

that (2.2) should technically be applied separately at different distances from the wall
because shear and thereby viscous heating is not uniform across the channel. However,

application of a single thermostat for the whole channel in the present case resulted in
the desired uniform temperature of 300K across the channel as seen in Fig. 2. Pressure

was regulated to be one atmosphere by making minor adjustments to the volume of the
channel domain.

In atomistic simulations the time step must be short enough to track the velocities of atoms,
which for ordinary temperatures and atomic masses are _ 103m/s. Unfortunately, these high
atomic velocities make it difficult to converge mean flow statistics when mean flows are typically
many times (often several orders of magnitude) smaller than the thermal velocities. Thus seem-
ingly unphysical flow velocities are often used to overcome the signal-to-noise problem. Couette
flow tests showed that the SPC/E viscosity was independent of shear rate to considerably higher
shear rates than in the present simulations.
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3. Results

The C1- density as a function of distance from the wall is plotted in Fig. 3. As expected,

the profile is sharply peaked near the walls and falls to a low value by the middle of
the channel. The small bumps near the peak at both walls are believed to result fi'om

molecular stacking. They are roughly one water molecule width away from the peak.

The computed profiles differ from the theoretical prediction of (1.1) with '_b(y) from

(1.3). The computed profiles have higher peaks at the walls and fall away- faster into

the channel. A possible explanation for this discrepancy is the finite size of the ions

which is neglected in the theory. For example, it is unclear where to apply (1.5) since

the precise location of the wall is not well defined. For the theoretical curve in Fig. 3,
(1.5) was applied so that the concentration peaks would coincide with those from the

simulation, but this is not the closest approach made by the C1- in the simulations.

Another possible explanation is that the dispersion energy (U _ 1/r 6) is not taken into

account in (1.1), but since the Lennard-Jones energy well is deeper (larger e) for the

oxygen-wall interaction than for the chloride-wall interaction (see table 1), we expect
this to decrease the C1- concentration at the wall rather than increase it.

Another possible explanation for the disagreement seen in Fig. 3 is that the dielectric

properties of the solvent are altered in the near neighborhood of the charged surfaces.
Since the wall is charged, we expect there to be a preferred orientation of the water
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molecules adjacent to it, which will in turn alter their dielectric properties since these

waters can not respond to an electric field as they do in bulk. There is experimental

evidence for reduced permittivity near a charged surface (Hunter (1981)). With the dipole

angle 0 defined as in Fig. 4, Fig. 5 shows the probability density (p.d.f.) function of the

angular orientation of the waters at different distances from the wall. The p.d.f.'s are

weighted so that a random orientation gives a uniform distribution. We see in Fig. 5 that
closest to the wall, the dipole vectors are all within 45 ° of being perpendicular to the wall.

Interestingly, the waters at around y = 3_ have 0 _ 45 ° as their most probable angular
orientation, but by y = 3.9A the most probable orientation is again perpendicular to the

wall. At larger distance the distribution becomes much more uniform and is nearly flat
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by y = 15Jr. A preferential orientation would tend to decrease c and thus increase the

apparent strength of the electric field near the wall consistent with Fig. 3.

The computed velocity profile is shown in Fig. 6. We see that it is approximately
parabolic in the middle of the channel, but it does not continue as a parabola all the way

to the wall. Instead there is considerably more resistance close to tile wall. Immediately
adjacent the wall tile atoms appear fixed in a Stern layer. The details of this are the

subject of continuing investigations.

4. Summary

This paper has t)resented simulations of electro-()smotic flow of an aqueous solution in

a 50A wide channel. It was shown that the ion distribution is in general agreement with

a theory that assmnes constant permittivity and infinitesimal ions, and it was suggested
that non-uniform permittivity due to the preferential orientation of the water molecules

in the near-wall region might explain the observed disagreement with this theory. The
velocity was found to be approximately parabolic in the middle of the channel, but it

flattened out near the walls in the Stern layer. These simulations represent a first step in a
continuing effort to identify and model mechanisms in electrically driven nanometer-scale
_]OWS.
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The turbulent life of phytoplankton

By S. Ghosal_, M. Rogers_ AND A. Wray_:

Phytoplankton is a generic name for photosynthesizing microscopic organisms that in-

habit the upper sunlit layer (euphoric zone) of almost all oceans and bodies of freshwater.

They are agents for _'primary production," the incorporation of carbon from the environ-

ment into living organisms, a process that sustains the aquatic food web. It is estimated

that phytoplankton contribute about half of the global primary production, the other

half being due to terrestrial plants. By sustaining the aquatic food web and controlling

the biogeochemical cycles through primary production, phytoplankton exert a dominant
influence on life on earth. Turbulence influences this process in three very important

ways. First, essential mineral nutrients are transported from the deeper layers to the

euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton

in the euphotic zone since in still water, the phytoplankton, especially the larger species,
tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from

the surface to the dark sterile waters, and this is an important mechanism of loss. Thus,

stable phytoplankton populations are maintained through a delicate dynamic balance

between the processes of turbulence, reproduction, and sinking. The first quantitative
model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an at-

tempt to extend their efforts through a combination of analysis and computer simulation
in order to better understand the principal qualitative aspects of the physical/biological

coupling of this natural system.

1. Introduction

The word "plankton" comes to us (Thurman (1997)) from a Greek word (rr,_au_ro()

meaning "wanderers" or "drifters" first coined by the German scientist Victor Heusen

(1887). They refer to the large class of microscopic organisms (2-200 pro) that are carried
around by the currents in any natural body of water. Biologists have various ways of

organizing the many species of plankton into classes and subclasses¶. At the lowest level,

they are divided into two classes "phytoplankton" and "zooplankton". The members of

the former class photosynthesize with the help of chlorophyll and thereby contribute

to primary production, the latter do not photosynthesize, but sustain themselves by

"grazing" on the phytoplankton.
The distribution of phytoplankton is not uniform, but varies over large as well as small

length and time scalesll. The phytoplankton density, like weather patterns, shows chaotic

dynamics and is influenced by a wide range of conditions. Though a fully predictive

j- Mechanical Engineering, Northwestern University
1: NASA Ames Research Center, Moffett Field, CA
¶ Excellent illustrated compilations of plankton species exist on the internet, see e.g.

http: / /www.calacademy.org/research / diatoms/ diatoms.html.
II NASA's SeaWiFS project continuously provides global maps, similar to "weather

maps", of the worldwide phytoplankton distribution through satellite imaging, see
http: / /seawifs.gsfc.nasa.gov /SEAWIFS.html.
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model does not seem attainable in the near future, a fundamental understanding of the
basic physical processes underlying this variability is of great importance.

Because pimtosynthesis removes carbon dioxide from the atmosphere and releases oxy-

gen, the global primary production due to phytoplankton is an important variable in

climate models. There are also more subtle but extremely important effects on global bio-

geochemistry. For example, it has been suggested (Charlson et al. (1987)) that dimethvl-
sulphide released by phytoplankton algae is a major source of cloud condensation nuclei.

Cloud albedo is believed to be a critical factor in climate models since it controls global

absorption of solar irradiance. The health of the marine system is closely linked to phy-

toplankton productivity, the richest fisheries tend to be concentrated in areas where up-

wellings bring mineral nutrients to the surface and support large phytoplankton popula-

tions. In addition to providing organic material to feed the higher animals, phytoplankton

sustain aquatic life by enriching the water with oxygen, a byproduct of photosynthesis.

Sudden explosions of the phytoplankton population (known as a "bloom") can ]lave dis-

astrous effects, especially in coastal regions. Certain species produce deadly toxins and,

when present in large concentrations, they poison fish and animals higher up in the food
chain. Filter feeders such as shell fish tend to concentrate these toxins in their bodies

and may poison animals that feed on them (including humans). Even species that do not

create toxins can kill fish populations over a wide area. The large concentrations of plank-
ton produced (luring a bloom can physically clog the gills of fish, and when the plankton

die after rapidly using up the mineral nutrients, their decomposing bodies deplete the

water of oxygen suffocating fish that get trapped in the bloom. The large concentrations

of plankton can sometimes physically color the water giving rise to the term "red tide",

though HAB ("Harmful Algal Blooms") is preferred in the scientific literatureL

The large scale dynamics of plankton concentration is controlled jointly through the

effects of advection by large scale flow patterns, turbulent diffusion, gravitational settling,

reproduction, and loss through grazing by zooplankton, various filter fee(ters, and other
marine animals.

Since phytoptankton convert carbon dioxide to organic material with tile aid of sun-

light, the reproduction rate depends directly on the rate of photosynthesis, which in turn

is controlled by the light intensity. The rate of photosynthesis increases ahnost linearly
with light intensity (Reynolds (1984)) until it saturates. A further increase in intensity re-

sults in a slight decrease in the photosynthetic rate, an effect known as "photo-inhibition".

Phytoplankton, therefore, can survive and multiply only in the upper layers of oceans

and lakes known as the "euphotic zone". The depth of the euphotic zone varies widely
depending on water clarity, latitude, and season. For the open ocean it is often in the
range of 50 to 100 meters.

After the "light climate", the most important factor in phytoplankton productivity

seems to be the concentration of inorganic salts, primarily nitrates and phosphates. These

salts accumulate in the deep layers of the ocean due to runoffs from land over geological

time and due to the constant "rain" of dead planktonic matter from the upper productive

layers. The productivity of phytoplankton is strongly constrained by the need for light,
which is only available in the upper layers, and the need for mineral nutrients, available

only in the deeper layers. Terrestrial plants are in a similar predicament and have evolved

roots, trunks, and branches to solve their transport problem. Phytoplankton, on the

other hand, rely on vertical upwelling and turbulent transport to dredge up nutrients

t Woods Hole Oceanographic Institution maintains a very informative web site on HAB s,
see htt p://www.redtide.whoi.edu/h ab.
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from the deeper waters. In the ocean, a significant correlation exists between regions

of high primary productivity and regions of upwelling. The carbon dioxide needed in

photosynthesis is utilized from dissolved carbonates and bi-carbonates, which are plentiful

and are rarely a limiting factor in primary production.
Various other factors directly or indirectly affect plankton productivity. Water temper-

ature and salinity have a selective effect on plankton production as individual species are

adapted to survive in certain optimal temperature and salinity ranges. More importantly,

temperature and salinity control the stability of water columns and, therefore, the degree
of turbulent mixing. Turbulent mixing in turns controls the transport of minerals and

suspension of the phytoplankton in the euphoric zone; both of these physical effects are

of great importance in the population dynamics of plankton.
Grazing by zooplankton is an important mechanism of loss. The phytoplankton-zoop-

lankton coupling gives rise to a predator/prey system with well known dynamical be-

havior such as limit cycles and chaos (Edwards _: Brindley (1999), Truscott _ Brindley

(1994)). Larger animals, primarily the "filter feeders" ranging from rotifers and larvae
of various kinds to whales, also crop the phytoplankton stock. In shallow bays and es-

tuaries (the San Francisco bay, for example), "benthic grazers" such as oysters that live
at the bottom form a copious sink of phytoplankton (Lucas et al. (1999a), Lucas et al.

(1999b), Lucas et al. (1998)).

2. The role of turbulence

Phytoplankton are typically about 2 to 5 percent denser than the water in which they
live. In the absence of special adaptations, they would sink out of the euphoric zone. Some

species have developed gas vacuoles that make them buoyant. The physical basis for the

adoption of various strategies by microscopic aquatic organisms has been discussed by

Alexander (1990). The two most common classes of phytoplankton are the diatoms and

the dinoflagellates. The dinoflagellates are weak swimmers and swim by means of flagella,

thereby counteracting the effect of gravity. The diatoms do not actively swim, but they

do have a variety of adaptations to reduce the sinking speed. This, together with the fact
that natural bodies of water are often turbulent, allow stable populations to exist even

though each individual organism does ultimately sink out of the euphotic zone.

Suppose that each phytoplankton sinks from the surface to the bottom of the euphotic
zone in a time ts in still water, and, in a time exactly equal to tr from birth, each organism

multiplies to form new individuals. Clearly, if tr > ts, no individual can reproduce and

the population cannot be sustained. If, oil the other hand, the waters are turbulent, each

organism may be carried either upward or downward by eddies. The mean lifetime is not

changed as a result, however; there is now a wide distribution of lifetimes around the mean

ts. Thus, even if tr :> ts, a significant fraction of the population gets an opportunity to

reproduce, and if the resultant increase is sufficient to offset the losses, a stable population

may exist. On the other hand, if tr < ts, stable populations can exist in both still waters
as well as turbulent waters. However, whereas in still waters every individual would have

had an opportunity to reproduce, in the turbulent case the fraction of the population with

lifetime exceeding ts would sink before reproducing. Turbulence can therefore be either a

help or a hindrance in the life of phytoplankton. This depends primarily on the size of the

phytoplankton species being considered. Since smaller organisms tend to both reproduce
faster and sink slower, turbulence in general tends to be essential for the survival of

larger species but an impediment for the smaller ones. Some very rough estimates may
be made taking 50 meters as the depth of the euphotic zone. The smallest plankton have
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sizes in the range of a few microns and sink at speeds (Reynolds (1984), Eppley et al.

(1967)) of the order of 0.1 meters per day. Therefore, for these species, t_ ,-, 500 days.

The reproduction time (Reynolds (1984), Fenchel (1974)) t_ -,- 5 days. These species are
therefore not dependent on the mechanism of turbulent suspension, and turbulence has

a negative impact: it carries viable organisms to the dark aphotic zone. The largest of

the phytoplankton (,,, 200#m) sink much faster at speeds ,_ 20 meters per day. For these

organisms, _-_ -,, 2.5 days whereas t, ,-_ 5 days. These species depend on turbulence to

survive. For the same reason, turbulence is a hindrance to the dinoflagellates that are

active swimmers or the negatively buoyant phytoplankton species that naturally rise to

the surface due to buoyancy aids. The relative population of diatoms and dinoflagellates

in the open ocean is known to be a sensitive function of the intensity of turbulence
(Margalef (1978), Gibson (2000)). During periods of high winds, diatoms are found to

dominate while in periods of calm, the dinoflagellates predominate. "Red Tides" which

are caused by dinoflagellates are usually preceded by days of calm conditions.

In addition to its role in suspending phytoplankton, turbulence has a second important

effect on plankton population dynamics. The mineral nutrients, primarily nitrates and

phosphates, needed by phytoplankton are often transported from the deep aphotic lay-
ers to the euphotic zone by turbulence. In the oceans, these mineral nutrients are often

depleted in the surface layers. Their concentration typically rises with depth and reaches

saturation in layers that can be as much as 500 to 1000 meters below the surface (Riley

et al. (1949)). The character of the environment in which phytoplankton live may be
broadly classified as eutrophic or oligotrophic, depending on whether mineral nutrients

for phytoplankton growth are plentiful or are a limiting factor in plankton population

dynamics. Examples of eutrophic environments are lakes and shallow waters in tropi-

cal and temperate zones. Deep alpine lakes and deep oceans are examples of typically

oligotrophic environments. Generally, clear blue waters are indicative of an oligotrophic

environment whereas greenish or brownish waters are typical of an eutrophic environ-
ment. The "eutrophication" of inland waters due to runoff of phosphate and nitrate rich

effluents due to human activity is an issue of great concern in contemporary ecology. In

this paper we will only consider a eutrophic environment so that the maximum plankton
population is light limited and depletion of mineral nutrients plays no role.

Turbulence in natural bodies of waters is to be expected since in nature turbulent flow

is the rule rather than the exception. In large lakes and the open ocean, turbulence is

most often driven by the breaking of surface waves. Another mechanism is the breaking of

internal waves at density interfaces. Thermal and salinity gradients due to heating by the
sun and/or the ebb and flow of tides can lead to convective instability that breaks into

turbulence. Stable stratification can also develop during warmer months, stabilizing the

surface layers against wind driven turbulence. All these geophysical processes naturally

have a profound impact on the population distribution of phytoplankton. The intensity
of turbulence in natural waters varies between wide limits; dissipation rates, e from

2.8 x 10 -7 to 47 cm2s -3, have been reported in the ocean (Peters & Marrase (2000)).

3. A simplified description

Population dynamics of phytoplankton may be described through the following sim-
plified partial differential equation:

0¢ 0¢
O_---/ Jr- U" V¢ : ,..q¢ -- "Op_zz -'b ]gTV2¢. (3.1)
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This is a balance equation for the plankton density ¢ and may be readily derived by

considering an elementary volume of liquid (much larger than the mean separation of

phytoplankton though small on the scale of variation of mean fields) being advected by
the mean flow u. The random motion due to turbulence is described through the eddy

diffusivity coefficient kT. The water surface is considered at z -- 0 and the z axis is
directed downwards. The second term on the right-hand side is a result of writing the

advective term as a sum of displacements due to the average fluid flow and that due to

gravitational sinking of the phytoplankton with a speed Vp relative to still water. If birth

and death processes are random and independent, the net source is proportional to the

concentration ¢. A reasonable model for the net growth rate is

S = P(I) - L (3.2)

where P(I) is the production, which in an eutrophic environment may be parametrized by
the local value of the light intensity I, and L is a constant loss rate due to natural deaths

and grazing by higher animals. A constant L is clearly a simplifying approximation;

coupling to the zooplankton population density is neglected in this analysis. For P(I) we

will use the Jassby-Platt model (Jassby & Platt (1976))

P(I) r+L [l+tanh(_( I )}] (3.3)=-V-

where r, _, and Ic are parameters characterizing the photosynthetic response of the

given phytoplankton species. The light intensity decays exponentially from its value at
the surface I0 so that the intensity at depth z is given by

I(z) = Io exp(-pz). (3.4)

The extinction coefficient # is represented as the sum of a background extinction #o,

characterizing the transparency of the water in the absence of the phytoplankton cells,
and a term due to the "shading" of the phytoplankton at a given layer by those that lie

above it,

-'_ #0 "c #1 _9 dz. (3.5)

The coefficient in the expression for P(I) in (3.3) has been written as (r + L)/2 for later

convenience; it is merely a constant independent of I. We will assume that _ is large so

that when I = 0, P(I) _, 0, and when I > Ic, P(I) reaches the saturation level r + L,

so that the net growth rate is r. The photosynthetic response of many phytoplankton

species have been documented. They typically increase linearly with the light intensity

for low light and then rapidly saturate. A further increase in the light intensity results

in a slight depression of the photosynthesis rate, an effect known as "photoinhibition".

Although Eq. (3.3) ignores photoinhibition, it is a reasonably good representation of this

response curve.
In this paper we will assume that the layer of water that is turbulent is infinitely

thick; that is, the "turbocline" is much below the euphotic zone. Such a model certainly

does not apply in all situations. The depth of the turbocline depends on the convective

stability of the water column and may very well be comparable to or much shallower than

the euphotic zone depth. Such a situation may give rise to very different kinds of effects
than those considered in this paper. In particular, the "Sverdrup Critical Depth Model"

(SCDM) may apply in determining whether phytoplankton blooms can occur (Sverdrup

(1953)).
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The boundary conditions for ¢ are those of no flux at the surface and vanishing plank-
ton density deep below the euphotic zone:

kT de- vp¢] =0 (3.6)
dz 2 z=0

¢(z _ ee) = 0. (3.7)

It should be noted that the formulation of the problem as presented here is nonlinear,
and the amplitude as well as the shape of the profile are fully determined.

4. Layer models

It is instructive to consider the limit a -+ oc in the above formulation. We look for

steady one-dimensional solutions ¢ = ¢(z). In this case, the source term S is a step
function

S={ r ifz< H;-n if z > H (4.1)

where 'z = H' is the location of the boundary of the euphotic zone. Since I = Ic
determines this boundary, from (3.4) and (3.5) it follows that

H= H0

1 + a foH ¢ dz (4.2)

where

and

_ Pl
a _ . (4.4)

It0

The steady plankton density then obeys a linear one-dimensional differential equation

k d2¢ de
T d--_z2 - vp._zz + S(z)¢ = 0 (4.5)

with a piecewise constant coefficient S(z) given by (4.1). The boundary conditions are
(3.6) and (3.7).

We do not present the details of the algebra leading up to the solution, but sketch

the general procedure and present the final analytical result. In the aphotic zone (z >
H), Eq. (4.5) allows an exponentially growing and an exponentially decaying solution;

only the latter is consistent with (3.7). In the euphotic zone (z < H), there are two
linearly independent solutions of the form ,-_ exp(rnz) so that the general solution is a

superposition of the two with unknown coefficients A and B. The boundary condition
(3.6) and the requirement that both ¢ and d¢/dz be continuous across the interface z = H

results in three homogeneous equations for determining the three constants A, B, and

the coefficient of the exponentially decaying solution in the aphotic zone, D. Nontrivial

solutions can exist if and only if the discriminant of this system of three equations is
zero. This is a condition for determining H and, therefore, the amplitude of the mode

since the amplitude is related to H through Eq. (4.2). Physically meaningful solutions

can exist if and only if the eigenvalue H is real, positive, and H _< Ha. From inspection of

the solvability condition, the requirement that these conditions are valid can be deduced,

and this determines a critical curve in a two-dimensional parameter space defining the
region in which steady one-dimensional solutions can exist.
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FIGURE 1. The critical curve for existence of stable populations, _ : zero boundary
condition, ---- : no flux boundary condition. Symbols correspond to parameters for DNS.

The physical parameters characterizing the system are the net growth rate in the

euphoric zone, r, the loss rate in the aphotic zone, L, the sinking speed in still water,

Vp, the coefficient of turbulent diffusivity, kw, and the clear water euphotic zone height,

H0. The analytical solution is most conveniently expressed in terms of the following

two parameters, A and A, with dimensions of length that determine the scale of spatial

variability of the population distribution in the euphotic and aphotic zones respectively:

2kT (4.6)

Vp

[ih_ 1 = v_p_p 1+_-1 .
2kT V2p

The two dimensionless parameters determining the critical curve are the dimensionless

growth rate

G = 2rA 4rkT (4.8)
Up U_

and the dimensionless height of the euphotic zone for clear water, A,

A = __H°= ___vpH° (4.9)
A 2kT

The condition for existence of physically meaningful steady one-dimensional solutions

can then be written in the following simple form

G > 1 (4.10)

and

where

A > 7 (4.11)
-v -I

G-p (4.12)
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: zero boundary condition,

and

A

p = 2 + _. (4.13)

Figure 1 shows the critical curve in the space of parameters G - A. Steady solutions

are only possible if conditions are such that the pair of values (G, A) characterizing the
system lies above the critical curve.

The distribution of phytoplankton with depth is given by

{ A_pexp(_) [v_-lcos(_ Gv/-G-Z_-l)+sin (_ Gv/-G--L_-I)]¢(z)
A_p exp (- _)

where

A_ v = (b (G 2 - 2pG + p2G)l/2

if z _< H;
if z > H. (4.14)

(Ap + AG)v/-G- 1 exp \ _ ]

A_v = _Ap + GA exp _j (4.16)

and

= ¢(z) dz

(4.15)

(4.17)

is the integrated phytoptankton density. The height of the euphotic zone, H, and the
integrated phytoplankton density are given by

H _ - 0,

A - v/G- 1 (4.18)

and

a (1+ G__)_. AAH 1. (4.19)

The formulation and the analytical solution presented above is a generalization of an

analysis by Riley, Stommel & Bumpus (Riley et al. (1949)). It differs from this previous

work in that the "self-shading" effect introduced through Eq. (4.2) was not considered
in the earlier paper. Riley et al. considered the depth of the euphotic zone H as fixed.
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They then interpreted the eigenvalue equation to mean that a certain relation must exist
between the parameters Vp, kT, r, L, and the depth of the euphotic zone H (= H0) for

solutions to exist. Such a condition, however, seems rather artificial as these parameters

assume values independently and only in rare circumstances can they be expected to fall

on the curve determined by the eigenvalue equation. The present formulation provides

a natural interpretation for the eigenvalue condition. It determines the amplitude of the

mode or, equivalently, the integrated phytoplankton density (I). Riley et al. also concluded

that for steady non negative solutions, one must have G > 1 and the depth of the euphotic
zone should not exceed a certain critical value. In our formulation, the requirements for

physically acceptable solutions are that G > 1 and the dimensionless clear water euphotic
zone depth A = Ho/£ should exceed a certain critical value given by (4.11). Unlike the

previous analysis which was linear, in our formulation both the amplitude as well as

the shape of the depth distribution of phytoplankton are determined because of the

nonlinearity introduced in the problem through the self-shading effect.

5. Direct numerical simulation

The analysis presented here is based on a number of simplifying assumptions, not all of
which can be expected to hold in natural environments. Measurements of phytoplankton

density are available from various sources; however, not all of the parameters needed in

the theory may have been measured in a given investigation. _rther, interpretation of
such data is often complicated by poorly characterized or unknown factors in the physical

environment. It would seem reasonable, therefore, to first test the principal results of the

analysis by comparing with a "numerical experiment" that is free of all the uncertainties
inherent in data from the natural environment. In order to reduce uncertainties arising

from the departure from isotropy near the free surface, the simulation is performed for

a fast sinking species so that the phytoplankton concentration peaks well below the free

surface.
A direct numerical simulation (DNS) is performed in a computational box of aspect

ratio 1 : 1 : 4, the depth D being the longest dimension. The velocity field u is determined

by the incompressible Navier-Stokes equations while the phytoplankton density ¢ obeys

the evolution equation

0¢
o¢ + _. v¢ = s¢ - vp_ + k0V2¢ (5.1)
Ot

where ko is a small "molecular diffusion" coefficient that is introduced to stabilize the

calculation by smoothing out any excessively sharp gradients in the scalar iso-surface.

We assume periodic boundary conditions for the velocity u and pressure p in all three
directions. For the scalar ¢, we assume periodic boundary conditions for the lateral

boundaries and zero boundary conditions at the top and bottom surfaces of the box

¢(x, y, 0, t) = 0 (5.2)

¢(x, y, D, t) = 0. (5.3)

The assumption of periodic boundary conditions at the top and bottom surfaces for the

velocity and pressure is chosen for the purpose of this investigation primarily for reasons

of simplicity of implementation. It allows us to treat the turbulence as isotropic, con-
sistent with the assumptions in the analytical work. Deviations from isotropy near the

free surface are to be expected in a realistic situation, but it is reasonable to undertake

a careful investigation of the isotropic case first. The isotropic assumption is rendered
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somewhat more plausible if the "upper" boundary is interpreted as an imaginary surface

located not at the true free surface, but somewhat below it. Similarly, the "lower" bound-

ary is considered to be an arbitrarily chosen plane well below the euphotic zone where the

phytoplankton concentration is essentially zero. The outward flux, F of phytoplankton
at the surface z = 0 is given by

F = -w--_- vp_ + k0 (9¢
0--_ (5.4)

where the overbar signifies horizontal average. If the layer of water between z = 0 and

the physical surface is sufficiently thin, phytoplankton production in this laver may be
neglected so that a balance prevails between the turbulent transport across'z = 0 and

the ftux due to sinking. The appropriate boundary condition for modeling this situation
would be

_=0 = 0. (5.5)
The difficulty of implementing the boundary condition (5.5) is that it provides a con-

straint on the mean field but not on the fluctuations. Further assumptions about the

nonzero Fourier modes of the scalar field need to be introduced for a numerical solution.

The only exception to this is the situation where the sinking speed of phytoplankton,
Vp, is sufficiently large so that the phytoplankton distribution peaks well below the sur-

face and the surface concentration of phytoplankton is negligible. Here the parameters

are chosen to correspond to this situation. In this case, (5.5) may be replaced by (5.2)

as a reasonable approximate boundary condition. Further, under these conditions any
uncertainties due to possible deviations from isotropy of the turbulent field near the free

surface would presumably have a negligible effect on the phytoplankton concentration

profile. Since G (x 1/vep and A o( vp, G --+ 0 and A _ oc as vp _ oc. In order to
remain within the zone of steady solutions in phase space, parameters for the numerical

sinmlation must be chosen so that the point (G, A) is in the upper left-hand corner of
the parameter space shown in Fig. 1, very close to but above the critical curve.

In order to perform the numerical simulation, an existing pseudospectral code designed
for simulating forced isotropic turbulence in the presence of a passive scalar was modified
in the following manner to implement the Jassby-Plat model discussed in Section 3.

The representation of the scalar field ¢ was changed from Fourier to physical in the

z-direction only. The z-derivative operator was changed from spectral to second-order
central difference at interior points, reverting to second-order one-sided finite difference

at the grid points closest to the boundaries. A scalar field for the light intensity was

added and updated at every time step in accordance with the requirements of (3.4) and

(3.5). The basic algorithm, which is discussed at length elsewhere (Rogallo (1977)), uses
a second-order Runge-Kutta method to execute the time step and uses the phase shift
algorithm to dealias. Dealiasing in the z direction was turned off for the scalar field.

A grid size of 64 x 64 x 256 was chosen as this seemed to provide a reasonably robust

representation of the turbulent field with a well-resolved vertical profile for the mean
phytoplankton concentration at a tolerable computational cost. The simulations took

about 7.7 seconds per time step on a 650 MHz PC with an Athlon Processor, and the
longest run involved 36,000 steps.

For the numerical experiment, the following parameters were chosen in the Jassby-Plat

model (in code unitst): r = 0.1, L = 0.18, Io/I_ = 12, #0 = 0.05, /O = 0.01, Vp = 0.28,

t That is, these numbers are directly used in the equations with horizontal domain size being
2rr. However, all results are presented as dimensionless quantities.
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and, in order that the Jassby-Platt model approximates closely the "Layer Model" a large

value was chosen for the parameter c_, c_ = 10. The point in the G - A parameter space

corresponding to this simulation is indicated in Fig. 1 by the filled circle. The turbulent

velocity field was initialized in the usual manner (Rogallo (1977)). The Taylor microscale

Reynolds number of the turbulence is Nx _ 29, and the Schmidt number is chosen to be

Sc = 0.7.
The solid line in Fig. 2 is the prediction of the theoretical model presented in Sec-

tion 4 with a value of the eddy diffusivity that corresponds to that found in the DNS.

The theoretical model assumes zero flux at the upper surface while the DNS uses zero

concentration. With the parameters chosen, the difference between the solutions using

the no flux and the zero boundary conditions is expected to be small. To quantify the

degree of dependence of the profile on boundary conditions, we worked out the analytical

results corresponding to the ¢ = 0 rather than the zero flux boundary condition at the

upper surface. This solution is very similar to that presented in Section 4. The formulae
are omitted for brevity, but the profile corresponding to it is plotted in Fig. 2 as a dashed

line. Clearly the two curves are qualitatively similar, but quantitatively the difference is

not negligible. The critical curve in parameter space corresponding to the zero boundary
condition solution is also depicted in Fig. 1 as a dashed curve. The boundary condition

is seen to have a minor impact on the critical curve.
In order to determine the correct value of the diffusivity to use in place of kT in the

analytical results, we perform a linear regression of the form Y = kr X to the data, where

X = (O-¢/Oz) and Y = -we. The slope of the regression line then gives kT. Figure 3
shows the time history of the regression line slope, kT, together with the correlation

coefficient characterizing the goodness of the fit. The average value of kT was determined

by time averaging the data after the initial transient, i. e. for tvp/), > 5. This value

is augmented slightly by the small "molecular" diffusivity ko for use in computing the

analytical profiles.
In order to test the stability of the solution numerically and also to test that the

profile indeed does evolve towards a steady state, we started the simulation from an
initial condition well below the theoretical prediction. The initial phytoplankton profile

was arbitrarily chosen as a "sine to the fourth" distribution with an amplitude of about

10 percent of that expected from the theory. In Fig. 4 the lines show concentration profiles
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FIGURE 4. The time evolution of the horizontally averaged plankton concentration as a
function of depth, the symbols represent the theoretically predicted profile.
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FIGURE 5. The time evolution of the light intensity as a function of depth; the highest curve is
the initial profile.

evolving from this initial condition and approaching the theoretical profile depicted by
the symbols. The "self-shading" effect is obvious in Fig. 5, which contains the evolution

of the light intensity. As the phytoplankton concentration increases, the light reaching
any given layer decreases, resulting in a decreased rate of production.

As a final test, we performed another simulation using the theoretical profile with the

zero concentration boundary condition at the surface. However, we reduced the growth

rate to r = 0.05, corresponding to the point depicted by the open circle in the parameter

space in Fig. 1. Since this is below the critical curve, it is expected the the phytoplankton

profile would decay away. This is indeed what is observed. Figure 6 shows the decay of
the depth integrated phytoplankton concentration density _ as a function of time.

These are preliminary results. It is not yet clear that the distributions have reached a

statistically stationary state. The results of more detailed investigations will be presented
at a future date.
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FIGUaE 6. The time evolution of the depth integrated plankton concentration showing the
decay of a healthy population when the operating point (G, A) lies below the critical curve.

6. Conclusion & future plans

Biology and geophysical phenomena are intricately interconnected and are merely two

essential components of a vast and complex machinery that operates on the planetary

scale. This complexity starts to become comprehensible only if we view it through the

lens of a highly simplified model that captures only the essential and then add in the
details as successive refinements when comparison with data warrants it. The present

paper represents merely a first step in this incremental process.

A general conclusion that may be drawn from the comparison of the numerical simu-
lations and the theory is that an eddy diffusivity model for turbulent transport appears

to be adequate for the purpose of predicting the mean concentration of organisms. Also,
the simulations seem to indicate that the solution corresponding to the analytical profile

is globally stable in the appropriate region of parameter space. Below the critical curve,
the zero solution seems to be globally stable. This conclusion, however, is tentative as it

is based on a very limited number of simulations.
The most serious shortcoming of the present model is that it applies only in eutrophic

environments. A natural extension of the model would be the introduction of the dy-

namics of nutrients into the model. A certain formal similarity of the mathematics of

plankton dynamics with that of combustion is obvious (both are reaction-diffusion sys-

tems). Carrying this analogy further, the distinction between eutrophic and oligotrophic
environments is not unlike the distinction between "premixed" and "diffusion flames"

(the latter being dominated by the depletion of reactants, similar to depletion of nutri-

ents in the case of plankton dynamics).
The second critical constraint is the implicit assumption that the entire water column

is uniformly turbulent. In many lakes the onset of warmer conditions during spring causes
the water column to become stably stratified so that the wind driven turbulence cannot

penetrate to very deep layers. The change in the relative position of the turboeline
with respect to the boundary of the euphotic zone due to stratification effects brought

about by thermal and salinity gradients is a very important component of phytoplankton

dynamics. In particular, the classical Sverdrup Critical Depth Model (SCDM), which is

supported by a wide range of geophysical data, correlates phytoplankton blooms with
the turbocline becoming shallower than a certain critical depth. Generalization of the

current model would be necessary to include these very important effects.
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The current model assumes the plankton distribution to be statistically homogeneous
in the horizontal directions. This simplified model fails to throw any light oil the rich and
varied horizontal structure seen in satellite images of the plankton _tistril)ution in natural

waters. Phytoplankton patches are transported by horizontal currents, but they can also

be expected to show intrinsic dynamics. For example, if a small patch of phytoplankton
are introduced in waters for which the point (G, A) in parameter space is favorable to

phytoplankton growth, what are the dynamics of the process by which the steady state

distribution in the above model gets established? The solution is likely to be analogous
to tile problem of the propagation of an ignition front leading to the formation of a flame

sheet. The details of such processes for the phytoplankton system are poorly understood
and would be interesting areas for future investigations.
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The optimization group

The optimization group of the CTR summer program focused on tile development

and implementation of novel deterministic and stochastic optimization techniques to

the design of micro-fluidic channels and to the destruction of trailing aircraft vortices.
The CTR summer program was instruinental in facilitating, for the first time, the close

interaction of scientists working in the areas of deterministic and stochastic optimization,

allowing a critical assessment of both techniques and opening new areas for collaborative,

interdisciplinary research.
The optimization of microfluidic channels used in bioanalytical applications served as

a common testbed for tile application of novel optimization techniques. Mohammadi,

Molho and Santiago implemented a dynamic minimization technique developed by Mo-

hammadi and Pironneau (2000) and conducted an extensive study of the optimization of

the geometry of these channels in a CAD-free framework. Their results revealed an array
of novel efficient designs for serpentine channels with 90 and 180 degree turns. Moreover,

the study of this group demonstrated how advanced optimization techniques developed
for the needs of aerodynamic applications can transcend and impact domains such as

those of microfluidics.

In parallel, Sbalzarini, Miiller and Koumoutsakos developed and implemented evo-
lution strategies with step size adaptation and in parallel computer architectures for a
class of microfluidic channels with 90-degree turns. They obtained a series for designs

encompassing the optimal results obtained by the deterministic schemes, albeit at higher

computational cost. An additional purpose of this group study was the development of
novel evolutionary nmlti-objective optimization strategies. These studies resulted in an

array of designs compensating between manufacturing costs and minimal dispersion.

The portability for evolutionary algorithms allowed for another study by Cottet,
Koumoutsakos and Sbalzarini on the destruction of trailing aircraft vortices. Using fast,

viscous vortex methods and a set of vortices modeling the wake of airplanes at landing

configurations, evolution algorithms recovered in an automated optimization cycle the
results found by linear stability theory (Crouch, 1997). Moreover, novel vortical arrange-

ments were revealed that allow for larger distortion of the tip vortices.

In summary, this CTR summer program laid the foundation for a critical assessment

of various optimization techniques while demonstrating the interdisciplinary character

of the developed optimization tools. A preliminary conclusion of this study is that de-

terministic optimization techniques are the method of choice for well defined problems

where gradient information is readily available. However, this information may come at

the expense of linearizations and constrained parameterizations of the problem. Evolu-
tionary algorithms circumvent these difficulties at the expense of higher computational

cost. An additional difficulty with evolutionary techniques is the absence of rigorous re-

sults regarding their convergence. On the other hand evolutionary algorithms are robust,
embaxrassingly parallel and highly portable algorithms that may make them the method

of choice in certain engineering problems. We hope that the works of this CTR Summer

Program would serve in initiating further interactions between researchers in determinis-
tic and stochastic optimization as applied to a wide range of interdisciplinary engineering

problems.

Petros Koumoutsakos
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Design of minimal dispersion fluidic channels in a
CAD-free framework

By B. Mohammadit J. I. Molho_ AND J. G. Santiago:_

We show the application of our shape optimization approach to the design of electroos-
motic micro-fluidic channels realizing minimal geometrical dispersion on 90- and 180-

degree turns.

1. Introduction

Microfluidic channel systems used in bio-analytical applications are fabricated using

technologies derived from microelectronics industry including lithography, wet etching,

and bonding of substrates. One important class of these channel system uses capillary

zone electrophoresis to separate and detect chemical species. This technique separates

chemical species suspended in a liquid buffer based on their electrophoretic mobility. The
electric field in these systems is applied along tile axis of the channel using electrodes

immersed at reservoirs at the end of the micro-channels. The ability to discriminate

between sample species of nearly equal mobility is enhanced by increasing the channel

length (Culbeston, Jacobson & Ramsey (1998), Molho et al. (2000)). In order to achieve

channel lengths of order 1 m and yet confine the nficro-channel system to a compact con-

figuration with dimensions less than about 10 cm, curved channel geometries are required.

Unfortunately, curved channel geometries introduce skew, which creates a dispersion of

the electrophoretic sample bands in the flow. This curved-channel dispersion has been
identified as an important factor in the decrease of separation efficiency of electrophoretic

micro-channel systems. The goal of the current work is to analyze and then minimize

the skew that is introduced by turns in electrokinetic microchannels. Unfortunately, we

notice that reducing the skew often introduces a new type of residual dispersion asso-

ciated with band advection away from the channel boundaries. To avoid this effect it

is necessary for the channel walls to be as smooth as possible with minimal curvature
variation. However, optimizations based only on skew minimization do not yield smooth

walls. We therefore add a constraint on the wall smoothness to our optimization.

The optimization formulation for such devices has to include therefore the following

points:
• minimize the skew due to turns,
• minimize the residual dispersion associated with band advection,

• avoid too much variations in walls curvature,

• maximize the length of the channel,

• minimize the occupied surface.

Our aim in this paper is to show how to use our optimization platform, first designed

t University of Montpellier and INRIA, France
:_ Mechanical Engineering Dept., Stanford University, Stanford, CA, USA
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for aeronautical applications (Mohammadi (1997a),Mohanunmadi & Pironneau (2000)),
for the design of minimal dispersion electrokinetic channels.

An important ingredient in the platform is the Computer-Aided-Design-free parame-

terization of the micro-fluidic channel geometry which has shown its ability to produce
various new shapes not necessarily reachable in the original CAD parameterization. In

this parameterization, the control space is quite rich compared to a CAD parameteri-
zation (Mohaumunadi & Pironneau (2000)). We will see also that this parameterization

allows for modeling of dimensional uncertainties introduced by the manufacturing step.

Another important ingredient is to use dynamic minimization algorithms. We showed

how to put well known minimization algorithms in the form of dynamic systems, hav-

ing a decreasing energy like in Hamilton-Jacobi systems, suitable to reach stationary
point for the solution of coupled problems. Indeed, in this approach, the minimization

algorithm is seen as an extra state equation (for tim parameterization) and the whole sys-
tem is marched in a pseudo-time to a stationary point. Global minimization can also be

introduced by coupling several dynamic systems from different parameterization states
(NIohammmadi & Pironneau (2000)).

Finally, we would like to point out the use of incomplete sensitivities in the design pro-
cess. The aim is to perform analysis and design at the same time. The main idea is to use
two different state equations for the evaluation of the state variables and for the evalua-

tion of sensitivities. The first is usually complex and probably available in a commercial

package; the second one simpler, but of which we have complete control and knowledge.
The two different state equations are used because we would like the simulation and

design problems to have about the same complexity. We widely used this technique in

shape design in aerodynamical applications (Mohammmadi & Pironneau (2000)) where

the gradient of aerodynamical coefficients were approximated keeping only geometrical

coatributions (Mohammadi (1997a),Mohammmadi & Pironneau (2000)). This is espe-
cially important where the number of control parameters is large and would otherwise

require the use of an adjoint solver. This simplification is also important when the size
of the direct simulation problem is near the limit of what can be treated in a reasonable

amount of time by existing computer facilities.

We show the application of this technique by minimizing the dispersion of chemical

species moving electrokinetically through 90 and 180 degree turns. These turns are im-

portant as they can be used to make serpentine channels that provide long separation

lengths within a compact area. Typical cross-section sizes for these channels are 100 #m
in width and 10/_m in depth.

2. Governing equations

This problem is multi-model in the sense that several PDE are involved in the def-

inition of the state variables and the cost function. We will see that different levels of

approximation can be introduced for these state equations.

2.1. Electric field

We desire to simulate the motion of species in an electric field E(t, x). In general, E can

be either stationary or unsteady, but in this work, we consider only steady electric fields.
E = Vv is defined solving a Poisson equation for the potential v:

-Av = 0, in _ (2.1)
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Ov 0 on other boundaries.
v(ro_t) = v2, 0--_=
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2.2. Flow motion

For typical electrokinetic microchannel applications, the observed flow motion has a

velocity of about lO-4m/s - lO-am/s, channel thickness of 100 pro, and kinematic

viscosity about 10-Sm2s -1. This leads to Reynolds numbers ranging from 0.001 to 0.01.

Due to spontaneous charge separation that occurs at the channel walls, there is formation
of an electric double layer (Probstein). The typical size of this layer is a few nano meters.

The stiffness of this electric double layer makes it difficult to compute using classical

numerical approaches applied to the Stokes model with a Lorentz force term. However, it

is known that at the edge of the double layer the flow is parallel and directly proportional

to the electric field. The first model describing the flow motion can therefore be the Stokes

system with a slip velocity at the channel walls.

0__U_U_ #AU + Vp = 0, in the channel (2.2)
Ot

U = #eke on the inner and outer walls,

OU
-#-_n + p.n = 0 on in and outflow boundaries,

where #ek is the electrokinetic mobility of the flow, # the dynamic viscosity, and n the

unit external normal to the boundaries.

2.3. Reduced models for the flow

In the absence of a pressure gradient, the previous model reduces to two elliptic equations

for the velocity components and states that the velocity vector is locally parallel to the

walls and proportional to the local electric field U = #ekE(7 with 0 obtained solving for

-Aft1 = 0, -Ag2 = 0, in _, (2.3)

00
- 0 on other boundaries,

Cr = (_21,fi2) = r = (T1,T2), on channel walls, On

where T is the local unit tangent to channel walls. Noticing that the electric field itself

is parallel to walls, this means that the velocity is everywhere parallel and proportional

to the electric field:

U = #ekE. (2.4)

We use this latter model in our optimization problem. In addition, this model is inter-

esting for incomplete sensitivity evaluation (see below), where different models are used
for the state and gradient computations. In other words, even when using more complex

models, we should consider this model as the state equation to be used for sensitivity

evaluation.

2.4. Advection of species

The motion of a species a at infinite Peclet number by the velocity field U computed

above is described by:

at(x,t) + U(x)Va = 0, in Ft, (2.5)

a(rin_t) = given.
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As we consider the velocity field defined by tit(.' stationary electric field, this step is
therefore only a post-processing step and is devoted to the quantification of the skew.

3. Design problem formulation

We consider the following constrained minimization problem:

min J(x, q(x), u(q, x)),
z(t)EX (3.1)

E(x, = O,

gl(x) < O, g2(q(x)) < 0, g3(q,u(q,x)) _ O,

where x E X C R _'_ describe our CAD-Free parameterization (Mohammadi (1997a)).
q(x) describes all geometrical entities (normals, surfaces,...), u E R N denotes the state

variables (here the potential, electric field, fluid velocity, and the advected species) and

E E R N the state equations described above, gl defines the constraints expressed directly

on the parameterization and is taken into account in the definition of the admissible space

X, g2 defines constraints on geometrical quantities (for instance concerning the regularity

of the shape) and 93 state constraints on u (for instance concerning the regularity of the
velocity field).
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3.1. Robustness

In many microfabricated fluidic channel systems (Molho et al. (2000)), it is difficult to

exactly realize proposed shapes due to small but significant errors introduced in the

manufacturing step. One way to account for these variations is to introduce a random

perturbation operator in the optimization algorithm in the sense that the proposed shape

is equivalent to any shapes in a given range (e.g. 5% in normal variation). The minimiza-

tion problem (3.1) can therefore be reformulated as:

min max J(y,q(y),u(q,Y)), (3.2)
z(t)EX yEY(X)

with the state equation and constraints as above. Here the admissible space Y(X) for

the worst case analysis approach is defined by:

r(x) = {y _ [_-x,o_xl,Vx E X} C

which, for instance, for a = 1.05 defines a 5% variation range around the proposed shape.

If a = 1, there is no randomness and the two optimization problems (3.1-3.2) are similar.
Another way to proceed is to perform the optimization in an admissible space with

slightly less regularity required than what would be realizable by the manufacturing.
Hence, the obtained shapes includes a possible imperfection. We propose the following

approach:
• Define the admissible space X for the manufacturing,

• Extend X to X' including less regular shapes,

• Perform the optimization (3.1) in X',

• Project the optimized shape into X,

• Validate the regularized shape for the skew.

This approach is easy to account for in our CAD-Free parameterization presented bel-
low. We show in (Fig. 1) a possible loss of regularity for the shape; three designs have

been performed under the same conditions but with slightly different minimum required

regularity for the admissible spaces.

4. CAD-Free shape and mesh deformation tools

The shape deformation is done in a CAD-Free framework (Mohammmadi & Pironneau

(2000)) in the sense that the only entity known during optimization is the mesh. This

parameterization has several characteristics:
1. All of the nodes on the inner wall of the channel are control points. More precisely,

we use the local normal to the inner channel wall and specify the deformations in the

direction of this normal n(x). Hence, for a curve 7(x), a deformation of amount f(x),

defined for each node, leading to the deformed curve _(x), can be expressed in the normal

direction to 7 by:

#(z) = +/(x>(7(x)).
2. To avoid oscillations, a 'local' smoothing operator is defined over the shape.

The smoothing operator is required because the gradient has less regularity than the

parameterization. Indeed, suppose that the cost function is a quadratic function of the
parameterization: J(x) = (Ax - b) 2 with x E HI(F), A e H-I(F) and b E L2(F). The

gradient J_' = (2(Ax-b)A) E V with H-_(F) C V C L2(F). Hence, any parameterization
variation using J" as descent direction will have less regularity than x: 6x = -p J" =
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-p(2(Ax - b)A) E V, where H-_(_) C I" C L2(f_). We need therefore to project into
H i (_) using the localized solution of a second order elliptic system in regions where the
(teformation is not. smooth enough.

(I - e_)55c = 6x, (4.1)

52 = 5x = 0 where constrained,

where £_" is the smoothed shape variation for the shape nodes and &r is the variation

given by' the optimization tool. By 'local' we mean that if the predicted shape is locally,
smooth, it remains unchanged during this step and 5 is set to zero for these regions if,

ao (6x)
(&)---T< Ton, (4.2)

where 5ij(ax) is the difference between the variations of the two nodes of each boundary

edge and (6x)7, the mean variation on this edge and TOL a regularity tolerance factor.
To include a loss of regularity as discussed above, it. is sufficient to ask for more

tolerance in the step above.

Once the shape deformation is defined, it is propagated over the computational do-

main using an elasticity based procedure as described in (Mohammmadi & Pirommau

(2000)). These shape and mesh deformation tools have been use(t in optimization prob-
lems in two- and three-dimensional configurations for incoint)ressible an(l compressible
flows (Mohammmadi & Pironneau (2000)).

5. Cost function and constraints

_,_ want to minimize the skew, which can be quantified in different ways. For examt)le ,
we (:an ask for iso-values of the advected st)ecies to be always normal to the flow tiehl.
In this case, we can consider:

T

= f0 £(vo(.,,) ×

where T is the maximum migration time. These integrals are not suitabh_ fi)r cheap
sensitivity evaluation as they involve information over the whole domain. In a(ldition.

this cost function is too restrictive as we are actually interested only in minimizing the
final skew. The cost fimction reduces to:

a(z) = t (Va(x, T) x U(x))2dx, (5.2)
a_

which again reduces away from the turn, and therefore where U is constant, to:

£ &(x, T))_dx, (5.3)J(x) = ( On

where n is the normal direction to the local walls.

Another way to reduce the skew, which avoids the previous restriction, is to ask for all

particles traveling on characteristics to have the same migration time. Hence, the c.ost
function is given by:

fxdsf_ ds2J(x) =( _-- , _:) , (5.4)
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for any couple of characteristics X and )_' linking the outlet to the inlet. Here again, the
cost function is over the whole space, but we can consider only a few characteristics.

The two main characteristics are those defined by the internal and external walls of the

channel:

fr ds fr ds "2 (5.5)Y(*) = ( , u._ o u--/_)"

where Fi is the inner wall and Fo the outer wall in a turn. This last formulation is

interesting as it only involves boundaries which we know to be suitable for the application

of our incomplete sensitivity. Another interesting feature of formulations (5.4 and 5.5)

over (5.1) is that they do not require the knowledge of the distribution of the advected

species.
As we said, we notice that the residual band advection dispersion away from the

channel walls increases with tile variation of the shape curvature. We therefore add the

following constraint to the cost function (5.5) above:

+ ÷-, (5.6)

where 0 denotes initial inner and outer walls. Thus, when we allow both walls to move,

we obtain about the same amount of skew but a higher residual dispersion inside the

channel. The second constraint vanishes in cases where the outer wall is kept unchanged.

Two other types of geometrical constraints concern the amplitude of the deformations

and the regularity of the deformed shape. In the first constraint, shape variations are
allowed between two limiting curves. Regularity requirements are enforced using the

smoothing operator of the CAD-Free parameterization described above.
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6. Sensitivity and incomplete sensitivities

Consider the general simulation h)op, involved in (3.1), leading from shape parame-
terization to the cost fimction:

J(x) : x -+ q(x) --_ U(q(x)) --+ J(x, q(x), U(q(x))).

The Jacol)ian of J is given by:

dJ OJ OJ Oq OJ OU Oq

dx - Ox + _ Ox + OU Oq Ox

In most applications, the cost function is, or can be reformulated to have, the following
characteristics:

• The cost fimction J and the parameterization x are defined on the shape (or some
part of it),

• J is of the form

J(x) = fhape or part of the shape f(x, q)9(u)d?,

which means that it involves a product of geometrical and state based functions.

We have shown that for such cost functions, the sensitivity with respect to the state can

be neglected in regions where the curvature of the shape is not too large (Mohammadi
(1997a)-Mohammadi (1999)).

The concept of incomplete sensitivities was first introduced for aerodynamical applica-

tions involving hyperbolic and parabolic PDEs (Mohammmadi & Pironneau (2000)). In
that work, we showed that where the cost function, constraints, and controls are defined

over the shape (through boundary integrals for instance), a good estimation of gradients

are obtained by keeping only geometrical sensitivities. This means that onlyo the shape

deformation tool has to be differentiated and not the whole simulation loop. In l)artic-
ular neither the mesh deformation nor the state equation solver have t.o be linearized

(Mohammadi (1997b)). Hence, we consider the following approximation for the gradient:

dJ OJ OJ Oq

dx Ox + Oq Ox"

We can illustrate this idea by the following simple example. Consider as cost function

J = anu_ (a) and for the state equation the following diffusion equation:

-u,_=l, on ]e,l[, u(e)=O, u(1)=0,

which has as solution u(x) = -x2/2 + (e + 1)/2- e/2. We are in the domain of application
of the incomplete sensitivities (Mohammmadi & Pironneau (2000)):

• the cost function is product of state and geometrical quantities (larger is n, better
is the approximation),

• it is defined at the boundary,

• the curvature of the boundary is small (here no curvature at all).
The gradient of J with respect to e is given by:

_:n--1

J_(e) = en-'(nu,(e) + eu_(e)) = --_--(-n(e + 1) - e).

The second term between parenthesis is the state linearization contribution which is

neglected in incomplete sensitivities. We can see that the sign of the gradient is always
correct and the approximation is better for large n.
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As we stated above, the cost function (5.5) is suitable for the application of incomplete

sensitivities. We can increase direct geometrical contributions because the velocity is

parallel to the walls. The cost function we consider for derivation is therefore:

J(x) = ( , _#eklE I o .F#eklE____)2., (6.1)

where _ is the local unit tangent vector to the wall.

To evaluate the accuracy of these gradients, we compare the results obtained with this

approximation of the gradients with those coming from finite differences. This incomplete

sensitivity evaluation shows the importance of redefining cost functions as boundary in-

tegrals when possible (as shown above) and of locating the cost function and control
definition locations as close to each other as possible. This is in particular important

for three-dimensional configurations and it also permits optimization of an entire mi-

crofluidic network and not only a small section of the network. In fact, optimization

becomes possible for an3, geometry for which simulation is affordable as the cost of sim-

ulation and design becomes equivalent. Indeed, sensitivity analysis is now equivalent to

the linearization of the following approximate simulation loop:

J(x) : x -+ q(x)lr _ J(x,q(x),U(q(x))),

which means that we only account for the modification in the geometrical part defined

over the inner channel wail.

6.1. Multi-level gradient construction

The above discussion of incomplete sensitivities demonstrates that an accurate state

evaluation and an approximate gradient is preferable over an accurate gradient based on

an inaccurate state obtained from a coarse mesh.

Consider a bilinear cost function involving state u and geometrical q contribution and

defined over the same region as the control x.

The left-hand side is the difference between exact and incomplete gradient computed on

a fine mesh.

This error is often present and is due to the fact that the cost of iterative minimization

and gradient evaluations limits the user to coarser meshes than what would have been

used for a pure simulation.
One method for avoiding this difficulty is to use different levels of refinement for the

state and the gradient. This is the idea behind multi-level shape optimization where the

gradient is only computed on the coarse level of a multi-grid construction and where the
state comes from the finer level (Beux _ Dervieux (1997)):

(u.q) (fine level) = I( du (coarse level)).q(fine) + ,,(fine level) dd-_qx(fine).dz

The first term of the left-hand side is the interpolation of the gradient computed on the

coarse grid over the fine level.
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FIGURE 3. Adaptive simulation to accurately capture the skew.

7. Pseudo-unsteady closure equation for x

Consider the following tiine dependent equation for the shape parameterization x.
Here, tile time is fictitious and is similar to the descent parameter.

+ e 2_= -F(II, jr4 -1, V_,/).

F is a function of tile exact or incomplete gradient; it accounts for the projection over

the admissible space and the smoothing operator (II, j_). This system represents most

minimization algorithms. If e = 0, we recover the steepest descent approach. If e > 0,
this is the heavy ball method (Attouch & Confinetti (1996)) The aim in this approach is
to access different minima of the problem and not only the nearest local nfininmm. Con-

jugate gradient and quasi-Newton methods can also be cast in this form (Mohammmadi
& Pironneau (2000)).

To advance in time (7), we use a central difference scheme (denoted by, (ix p, the shape
deformation at, step p):

(V + )axP+_ e= V amp - V(V,,JV). (7.1)

After defining the shape parameterization, x °, the dynamical algorithm we use is as
follows:

Optimization iterations

1. compute the gradient: dJP d,]_'or ax ,

if (l[@_ II < Tog or JP < TOL) stop.

2. define the new admissible shape deformation using (7.1): _x v,

3. smooth the deformations using (4.1),
4. deform the mesh.

5. compute the new state: u v+_.

6. compute the new cost: jp+l.

7. p+-p+landgoto 1.

End of optimization loop.

8. Numerical results

In addition to the characteristics presented above, we use a Delaunay mesh adaptation

technique by local metric control that is widely used in various simulations involving the

solution of PDE's (Frey & George (1999), Hecht & Mohammadi (2000)). The impact of

this coupling has been shown on the advection of a passive scalar by the electric field

(Fig. 3). It is clear that to have the same quality without mesh adaptation implies the
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FIGURE 5. Initial shape for the 180-degree turn: effect of the turn on the advected species.

__r
J

/
l'

\

FIGURE 6. First class of optimized shat)es for tile 90-degree turn. The magnitude of the skew
has been reduced by one order.

use of a regular fine mesh everywhere, which is out of reach for general applications.

The remeshing is also important and absolutely necessary as the large deformations
introduced for the shape makes the mesh too distorted to be effective for finite element

simulations.
We show the skews produced by 90- and 180-degree turns in Figs. (4-5). We then

applied our optimization approach to these configurations. No symmetry assumption has
been made. The first class of optimized shapes for the 90- and 180-degree turns (Figs. 6-7)

correspond well with what was found by an intuitive design (Molho et al. (2000)). This is

important as it permits some confidence on the global design approach. Tile second classes

of optimized shapes for the 90- and 180-degree turns (Figs. 8-9) have been obtained by
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FIGURE 7. First class of optimized shapes for the 180-degree turn. Tile magnitude of the skew

has been reduced by more than one order.

FI(:IURf'; 8. Second class of optimized shapes for the 90-degree turn. The magnitude of the skew

is about the same than for the first class above with 15% less reduction in cross-section, but

there is more dispersion in the adveetion band as the wall curvature variation is higher.
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FIGURE 9. Second class of optimized shapes for the 180-degree turtl. Here again, larger

curvature variation introduces more dispersion in the advection band away from walls.
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FIGURE 10. Third class of optimized shapes for the 90-degree turn with both the inner and outer
walls modified. The skew is about the same than for tile first class of the 90-degree optimized
turn but with a much larger cross-section, but also more band dispersion away from walls.

L
] i i .!

FIGURE 11. Third class of optimized shapes for the 180-degree turn with both the inner and
outer walls moving. Tile skew has been quite reduced and the cross-section conserved (compared
to the first class of shape), but timre is much more band dispersion away from walls.

constraining the reduction in cross-sectional area and by requiring less regularity for the

shapes. However, the increase in irregularity leads to more band dispersion away from
the channel walls. The optimizations described above were performed without altering

the shape of the outer wall. To avoid too much restriction in the channel cross-section, a

third class of shape can be obtained by allowing both the inner and outer walls to deform

(Figs. 10-11). However, this turn is less interesting as two such turns would interfere when

used to create a serpentine channel pattern.

9. Concluding remarks

We have shown how to combine incomplete sensitivity analysis and the pseudo-

unsteady optimization approach to design reduced dispersion electrokinetic microchannel

devices. This analysis implies a redefinition of the cost function used for sensitivity eval-
uation based on approximate formula through boundary integrals. In addition, it has

been shown that, to reduce the dispersion associated with band adveetion away from

the channel walls, these walls need to be smooth with minimal curvature variation along

the walls. Using the ingredients presented in this paper, minimal dispersion 90- and 180-
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degree turns }lave been obtained which enable, by their combination, the construction of
long microfluidic channels within a compact area.

Acknowledgments

This work has been partly supported by the Center for Turbulence Research at Stanford

University. Many thanks to Profs. P. Moin, B. Perthame, and O. Pironneau for their

interests in this work. Many thanks to D. Spinks and M. Fatica for their assistance
during the summer institute.

REFERENCES

CULBESTON, C. T., JACOBSON, S. C. _ RAMSEY, J. M. 1998 Dispersion Sources for

Compact Geometries on Microchips. Analytical Chemistry. 70, 3781-3789.

_IOLIIO, d. I., HERR, A. E., MOSIER, B. P., SANTIAGO, J. G., KENNY, T. _V.,
BRENNEN, R. A. & GORDON, G. B. 2000 Designing Corner Compensation for

Electrophoresis in Compact Geometries. Proc. Micro Total Analysis Systems 2000.

MOHAMMADI, B. 1997 Practical Applications to Fluid Flows of Automatic Differentia-
tion for Design Problems. VKI lecture series, 1997-05.

MOHAMMADI, B. 1997 A New Optimal Shape Design Procedure for Inviscid and Viscous

Turbulent Flows. Int. J. for Num. Meth. in Fluid. 25, 183-203.

MOHAMMADI, B. & PrRONNEAU, O. 2000 Applied Shape Design for Fluids, Oxford Univ.
Press.

MOHAMMADI, B. 1999 Flow Control and Shape Optimization in Aeroelastic Configura-
tions. AIAA 99-0182.

PROBSTEIN, R. F. 1995 Physicochemical Hydrodynamics, Wiley.

BEux, F. & DEEtVlEL'X, A. 1997 A Hierarchical approach for shape optinfisation. Inria
report 1868.

ATTOb'CII, H., COMINETTI, R. 1996 A Dynamical Approach to Convex Minimization

Coupling Approximation with the Steepest Descent Method. J. Diff. Eq. 128(2),
519-540.

FREY, P. & GEORGE, P. L. 1999 Maillages , Hermes.

HECHT, F. & _'IOHAMMADI, B. 2000 Mesh Adaptation for Time Dependent Simulation

and Optimization, Revue Europ_enne des Elements Finis, submitted.



63
Center .for Turbulence Research
Proceedings o.f the Summer Program 2000

Multiobjective optimization using evolutionary

algorithms

By Ivo F. Sbalzarinit, Sibylle Miillert AND Petros Koumoutsakos_:_

Multiobjective evolutionary algorithms for shape optimization of electrokinetic micro

channels have been developed and implemented. An extension to the Strength Pareto

Approach that enables targeting has been developed. The results of the automated op-
timization cycle show shapes previously obtained by physical understanding as well as

novel shapes of even higher efficiency.

1. Introduction

Evolutionary algorithms (EAs) such as evolution strategies and genetic algorithms

have become the method of choice for optimization problems that are too complex to be

solved using deterministic techniques such as linear programming or gradient (Jacobian)

methods. The large number of applications (Beasley (1997)) and the continuously grow-

ing interest in this field are due to several advantages of EAs compared to gradient based
methods for complex problems. EAs require little knowledge about the problem being

solved, and they are easy to implement, robust, and inherently parallel. To solve a certain

optimization problem, it is enougi_ to require that one is able to evaluate the objective

(cost) function for a given set of input parameters. Because of their universality, ease

of implementation, and fitness for parallel computing, EAs often take less time to find

the optimal solution than gradient methods. However, most real-world problems involve
simultaneous optimization of several often mutually concurrent objectives. Multiobjec-

tive EAs are able to find optimal trade-offs in order to get a set of solutions that are

optimal in an overall sense. In multiobjective optimization, gradient based methods are

often impossible to apply. Multiobjective EAs, however, can always be applied, and they
inherit all of the favorable properties from their single objective relatives.

Section 2 of this paper introduces main concepts of single objective EAs. Section 3

extends these ideas to multiobjective cases and introduces the principles of dominance

and Pareto optimality. Section 4 describes the Strength Pareto Approach used in this

work, and in section 5 we extend it with a targeting capability. In section 6 the results

of both single and multiobjective optimization of a microchannel flow are shown and

discussed.

2. Single objective evolutionary algorithms

The basic idea for single objective EAs is to imitate the natural process of biologi-

cal evolution. The problem to be solved is therefore described using a certain number of
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:_ also at Center for Turbulence Research, NASA Ames/Stanford Univ.
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parameters (design variables). One then creates a group of A(> 0) different parameter vec-

tors and considers it as a population of individuals. The quantity A is called the population

size. The quality of a certain vector of parameters (i.e. all individual in the population)

is expressed in terms of a scalar valued fitness function (objective flmction). Depending

on whether one wants to minimize or maximize the objective flmction, individuals (i.e.
parameter vectors) with lower or greater fitness are considered better, respectively. The

algorithm then proceeds to choose the #, (# < A) best individuals out of the population

to become the parents of the next generation (natural selection, survival of the fittest).
Therefore, # denotes the number of parents. The smaller/_ is chosen compared to A, the

higher the selection pressure will be. Out of the # individuals chosen to be parents for

the next generation, one then creates a new population of A offspring x_ +1 by applying
mutation on the parents x_ as follows:

./

xg+l g+,V(0, E) i= 1,. A ,jE {1,i = xj ...... ,p} (2.1)

where Af(0, E) denotes a vector of jointly distributed Gaussian random numbers with

zero mean and covariance matrix E. The standard deviations (i.e. the square roots of the

diagonal elements a_ of E) of the additive random numbers determine "how far away from
its parent a child will be" and are called step sizes of the mutation. Now, the first iteration
is completed and the algorithm loops back to the evaluation of the fitness function for

the new individuals. Several different techniques for adaptation and control of the step

size have been developed (see e.g. B/ick (1997a), B/ick (1997b), Brick (1993), Hansen &
Ostermeier (1996), or Hansen & Ostermeier (1997)). In the following subsections, some
of the single objective Evolution Strategies used in this work are outlined.

2.1. The (I+I)-ES

One of the simplest and yet powerful evolution strategies is the "one plus one evolution

strategy", denoted by (I+I)-ES. In this strategy, both the number of parents and the

population size (i.e. number of offspring) are set to one: Ix = A = 1. Mutation is ac-

complished by adding a vector of usually uncorrelated Gaussian random numt)ers, i.e.

E = diag(a_) is a diagonal matrix. Step size adaptation can be performed according to

Rechenberg's 1/5-rule: if less than 20% of the generations are successful (i.e. offspring
better than parent), then decrease the step size for the next generation; if more than

20% are successful, then increase the step size in order to accelerate convergence. This

adaptation is done every N • LR generations where N is the number of parameters (i.e.
dimension of search space) and LR is a constant, usually equal to one. Selection is done

out of the set union of parent and offspring, i.e. the better one of the two is chosen to
become the parent of the next generation.

2.2. The (_, a)-ES

A slightly more advanced method is to take one or more parents and even more offspring,

i.e. _ 2 1 and A >/_. Mutation is accomplished in a similar way as with the (I+I)-ES.
Besides the 1/5 rule, another method for step size adaptation becomes available which

is called self-adaptive mutation (B/ick (1997a)). In this method, the mutation steps are

adapted every generation. They are either increased, decreased, or kept the same, each
with a probability of 1/3. On the average, 1/3 of the offspring will now be closer to their

parents than before, 1/3 keeps progressing at the same speed, and 1/3 explores further

areas. Depending on how far away from the optimum we currently are, one of these three
groups will do better than the others and, therefore, more individuals out of it will be
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selected to the next generation, where their step sizes are inherited. The algorithm adapts

the step size by itself, i.e. by means of mutation and selection.

2.3. The (#/#I,A)-CMA-ES

The covariance matrix adaptation (CMA) is a sophisticated method for online adaptation

of step sizes in (#, A)-ES with intermediate recombination (i.e. averaging of parents). It
was first described by Hansen & Ostermeier (1996) and further improved and evaluated

by Hansen & Ostermeier (1997). For a complete description of the algorithm, the reader
is referred to the latter publication. The basic idea is to adapt step sizes and covariances

in such a way that the longest axis of the hyperellipsoid of mutation distribution always

aligns in the direction of greatest estimated progress. This is done by accumulating
information about former mutation steps and their success (evolution path) and searching

it for correlations. Besides this very sophisticated method for step size adaptation, a

CMA-ES also includes mutation (with E now being a full matrix) and selection.

3. Multiobjective evolutionary algorithms

As soon as there are many (possibly conflicting) objectives to be optimized simulta-

neously, there is no longer a single optimal solution but rather a whole set of possible
solutions of equivalent quality. Consider, for example, the design of an automobile. Pos-

sible objectives could be: minimize cost, maximize speed, minimize fuel consumption and
maximize luxury. These goals are clearly conflicting and, therefore, there is no single opti-

mum to be found. Multiobjective EAs can yield a whole set of potential solutions - which

are all optimal in some sense - and give the engineers the option to assess the trade-offs
between different designs. One then could, for example, choose to create three differ-

ent cars according to different marketing needs: a slow low-cost model which consumes

least fuel, an intermediate solution, and a luxury sports car where speed is clearly the

prime objective. Evolutionary algorithms are well suited to multiobjective optimization

problems as they are fundamentally based on biological processes which are inherently

multiobjective.

After the first pioneering work on multiobjective evolutionary optimization in the eight-

ies (Schaffner (1984), Schaffner (1985)), several different algorithms have been proposed
and successfully applied to various problems. For comprehensive overviews and discus-

sions, the reader is referred to Fonseca & Fleming (1995), Horn (1997), Van Veldhuizen

& Lamont (1998) and Coello (1999).

3.1. Dominance and Pareto-optimality

In contrast to fully ordered scalar search spaces, multidimensional search spaces are only

partially ordered, i.e. two different solutions are related to each other in two possible

ways: either one dominates the other or none of them is dominated.
DEFINITION 1: Consider without loss of generality the following multiobjective opti-

mization problem with m decision variables x (parameters) and n objectives y:

Maximize y=f(x) = (fl(xl,...,xm),'",J'n(Xl'""xm))

where x = (xl,..., zm) e X (3.1)

y = (Yl,...,Y,_) e Y
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and where x is called decision (parameter) vector, X parameter space, y objective vector
and Y objective space. A decision vector a E X is said to dominate a decision vector
b E X (also written as a _ b) if and only if."

ViE {1,...,n}: fi(a) >fi(b)

A 3jE {1,...,n}: fj(a) >fj(b) (3.2)

Additionally we say a covers b (a _ b) if and only if a _- b or f(a) = f(b).

Based on this convention, we carl define nondominated, Pareto-optimal solutions as
follows:

DEFINITION 2: Let a E X be an arbitrary decision (parameter) vector.

(a) The decision vector a is said to be nondominated regarding a set ,V' C X if and
only if there is no vector in X' which dominates a; formally:

_a _ E X _ : a t >- a (3.3)

(b) The decision (parameter) vector a is called Pareto-optimal if and only if a is non-
dominated regarding the whole parameter space X.

If the set X' is not explicitly specified, the whole parameter space X is implied.

Pareto-optimal parameter vectors camlot be improved in any objective without causing

a degradation in at least one of the other objectives. They represent in that sense globally
optimal solutions. Note that a Pareto-optimal set does not necessarily contain all Pareto-

optimal solutions in X. The set of objective vectors f(at),a _ E X', corresponding to
a set of Pareto-optimal parameter vectors a _ E X _ is called "Pareto-optimal front" or
"Pareto-front ".

3.2. Difficulties in multiobjectve optimization

In extending the ideas of single objective EAs to multiobjective cases, two major problems
must be addressed:

1. How to accomplish fitness assignment and selection in order to guide the search
towards the Pareto-optimal set.

2. How to maintain a diverse population in order to prevent premature convergence
and achieve a well distributed, wide spread trade-off front.

Note that the objective function itself no longer qualifies as fitness function since it

is vector valued and fitness has to be a scalar value. Different approaches to relate the

fitness function to the objective function can be classified with regard to the first issue.

For further information, the reader is referred to Horn (1997). The second problem is

usually solved by introducing elitism and intermediate recombination. Elitism is a way

to ensure that good individuals do not get lost (by mutation or set reduction), simply by
storing them away in a external set, which only participates in selection. Intermediate

recombination, on the other hand, averages the parameter vectors of two parents in order
to generate one offspring according to:

x'j =ctx_t +(1-a)x_2 ,J, jl,j2 E {1,...,U}
X/g+l• = x'j + H(0, E) ,i=1,...,,_ ,j E {1,...,p}

(3.4)
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Arithmetic recombination is a special case of intermediate recombination where c_ =

0.5.

4. The Strength Pareto Approach

For this work, the Strength Pareto Appwach for multiobjective optiinization has been

used. Comparative studies have shown for a large number of test cases that, among all

major multiobjective EAs, the Strength Pareto Evolutionary Algorithm (SPEA) is clearly

superior (Zitzler N: Thiele (1999), Zitzler & Thiele (2000)). It is based on the above-

mentioned principles of Pareto-optimality and dominance. Tile algorithm as proposed by
Zitzler & Thiele (1999) was implemented in a restartable, flflly parallel code as follows:

Step 1: Generate random initial population P and create tile empty external set of

nondominated individuals P'.

Step 2: Evaluate objective function for each individual in P in parallel.

Step 3: Copy nondominated members of P to P'.

Step _: Remove solutions within P' which are covered by any other member of P'.

Step 5: If the number of externally stored nondominated solutions exceeds a given

maximum N', prune P' by means of clustering.

Step 6: Calculate the fitness of each individual in P as well as in P'.

Step 7." Select individuals fl-om P + P' (multiset union), until the mating pool is filled.

Step 8: Adapt step sizes of the members of tile mating pool.

Step 9: Apply recombination and nmtation to members of the mating pool in order to

create a new population P.
Step 10: If maximum number of generations is reached, then stop, else go to Step 2.

4.1. Fitness assignment

In Step 6, all individuals in P and P' are assigned a scalar fitness value. This is accom-

plished in the following two-stage process. First, all members of the nondominated set
P' are ranked. Afterwards, the individuals in the population P are assigned their fitness

value.

Step 1: Each solution i E P' is assigned a real value si E [0, 1), called strength, si is

proportional to the number of population members j E P for which i >2 J. Let n denote
the number of individuals in P that are covered by i and assume N to be the size of P.

Then si is defined as: si - N+l" The fitness fi of/is equal to its strength: fi = si E [0, 1).

Step 2: The fitness of an individual j E P is calculated by summing the strengths of all
external nondominated solutions i E P' that cover j. Add one to this sum to guarantee

that members of P' always have better fitness than members of P (note that the fitness

is to be minimized):

fi = l + _,i__jsi ,fi E [1, N) (4.1)

4.2. Selection and step .size adaptation

Step 7 requires an algorithm for the selection of individuals into the mating pool and Step
8 includes some method for dynamical adaptation of stcp sizes (i.e. mutation variances).

For this paper, selection was (tone using the following binary tournament procedure:
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Step I: Randomly (uniformly distributed random numbers) select two individuals out
of the population P.

Step 2: Copy the one with the better (i.e. lower for SPEA) fitness value to tile mating
pool.

Step 3: If tile mating pool is full, then stop, else go to Step 1.

Adaptation of the step sizes was done using the self-adaptive mutation method (e.f.

section 2.3). Each element of P and P' is assigned an individual step size for every

parameter, i.e. E = diag(a_) is a diagonal matrix for each individual. The step sizes of

all members of the mating pool are then either increased by 50%, cut to half, or kept tile
same, each at a probability of 1/3.

4.3. Reduction by clustering

In Step 5, the number of externally stored nondominated solutions is limited to some

number N'. This is necessary because otherwise P' would grow to infinity since there
always is an infinite number of points along the Pareto-front. Moreover, one wants to

be able to control the number of proposed possible solutions because, from a decision

maker's point of view, a few points along the front are often enough. A third reason for

introducing clustering is the distribution of solutions along the Pareto-front. In order

to explore as much of the front as possible, the nondominated members of P' should

be equally distributed along the Pareto-front. Without clustering, the fitness assignment

method would probably be biased towards a certain region of the search space, leading to

an unbalanced distribution of the solutions. For this work, the average linkage method, a
clustering algorithm which has proven to perform well on Pareto optinlization, has been

chosen. Tile reader is referred to Morse (1980) or Zitzler & Thiele (1999) for details.

5. Strength Pareto approach with targeting

Compared to other methods such as, for exanlple, the energy minimization evolutionary

algorithm (EMEA) (c.f. Jonathan, Zebulum, Pacheco & Vellasco (2000)), the SPEA has

two major advantages: it finds the whole Pareto-front and not just a single point on it,
and it converges faster. The latter is a universal advantage whereas the former is not.

There are applications where a target value can be specified. One then wants to find the

point on the Pareto-front which is closest to the user-specified target (in objective space).
This eliminates the need to analyze all tile points found by SPEA in order to make a

decision. EMEA offers such a possibility, but it converges slower than SPEA and, what's

more, it is fundamentally unable to find more than one point per run. Hence we wish to

extend SPEA with some targeting facility that can be switched on and off depending on

whether one is looking for a single solution or the whole front, respectively. We added
this capability to SPEA by the following changes to the algorithm:

1. Between Step 6 and Step 7 the fitnesses of all individuals in P and P' are scaled by

the distance D of tile individual fl'om tile target (in objective space) to some power q:

This ensures that enough nondominated members close to tile target will be found so

that the one with minimal distance will appear at higher probability. The parameter q
determines the sharpness of the concentration around the target.

2. Another external storage Pb_, is added which always contains the individual out

of P' which is closest to tile target. Therefore, between steps 4 and 5, the algorithm
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Parameter Value

Dimension of parameter space (m) 5

Size of population (X) 50
Size of mating pool (#) 30
Size of nondominated set (N') 70
Number of generations 250
Target value for (fl, f2) (0.5, 0.7)
Concentration parameter q 4

TABLE 1. Settings for targeting SPEA

calculates the distances of all members of P' to tile target and picks the one with minimal

distance into Pb_.,t. At all times, Pt,est only contains one solution.
3. At the end of the algorithm, not only tile Pareto-front is output but also the solution

stored in Pb_t. Note: due to clustering and removal in P', the solution in Pb_t is not

necessarily contained in P'. It is, therefore, an optimal solution which otherwise would

not have appeared in the outtmt.

The algorithm has been implemented and tested for convex and nonconvex testfunc-

tions. Figures 1 to 4 show some results for the nonconvex testflmction T2 as proposed in

Zitzler & Thiele (2000):

Minimize _(x) = (f_(x_), f2(x))

subject to f2(x) = g(222,''" ,xm)h(fl(xI) ,q(x2,''" ,xm))

where x = (xl,..., x,,,) (5.1)

fl(Xl) = Xl

9(x2,..., x,,,) = 1 + 9. _7,'i"'2 xi/(m - 1)

h(fl,9) = 1 - (fl/g)2

where m is the dimension of the parameter space and xi C::[0, 1]. Tile exact Pareto-optimal

front is given by g(x) = 1. Tile parameters of the algorithm were set as summarized in

table 1.
The chosen target value is slightly off-front. Therefore, the targeting error will never

be zero. Figure 1 shows the final population after 250 generations without targeting. The
diamonds indicate members of the external nondominated set (Pareto-optimal front)

whereas members of the regular i)opulation are denoted by crosses. In Fig. 2 the same

run has been repeated with targeting. Figure 3 shows the targeting error as a function

of the generation number. The dashed line indicates the theoretical minimum of the
distance. After about 80 to 100 generations, the point on the front which is closest to the

target has been found with good accuracy. Figure 4 shows the path of Pbest towards the

target. The jumps are due to the fact that the individual stored in Pbest gets replaced as
soon as another individual is closer to the target.

The best objective wdue that was achieved was: f(P_,t) = (0.5265,0.7247), its Eu-

clidean distance from tim target is 3.6287.10 -2, which is equal to the theoretical minimal

distance within the given colnputational accuracy.
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6. Microchannel flow optimization

Both single and multiobjective EAs have been applied to a fluidic microchannel design

problem. Bio-analytical applicatkms require long thin channels for DNA sequencing by

means of electrophoresis. In order to pack a channel of several meters in length onto a
small square plate, curved geometries are required. However, curved channels introduce

dispersion and, therefore, limit the separation efficiency of the system. The question is
now how to shape the contour of the channel in order to minimize dispersion. A detailed

description of the problem as well as an optimization solution using gradient nmthods
can be found in Mohammadi, Molho & Santiago (2000).

6.1. Single objective optimization

The goal of this optimization run was to minimize the final skewness of the flow inside

the channel, i.e. it was required that the iso-values of the advected species a be normal

to the flow field U by time T, when they exit the channel. The objective function defiiJc, d
by Mohamnmdi, Molho & Santiago (2000) is, therefore:

7 ')d : (Va(x,T) x ( (x))" dx (6.1)



Multiobjective evolutionary optimization 71

8 , , [ i i I _ i ,

._ 5 'L¢,,

4 L,

3 "/V', _,

0 i i i [ i i i i i

20 40 60 80 1O0 120 140 160 180 _'00
nr. of function calls

FIGURE 5. Convergence of (3,12)-CMA-ES [_ ] and (I+I)-ES [.... ] vs. number of
evaluations of the objective function.

with _ being tile cross section of the channel exit. Tile shape of the 90-degree turn is

described by 11 parameters. Therefore, the parameter search space is of dimension 11.

Tile objective space is scalar since it is a single objective problem.
The calculation of the flow field and evaluation of the objective function was done

by an external flow solver provided by Mohammadi, Molho &: Santiago (2000). Both

a (I+I)-ES and a (3,12)-CMA-ES were applied to the problem and their convergence
was compared. The results were statistically averaged from 5 runs with different initial

conditions, i.e. starting points.
Since the CMA-ES has a population size of 12, it performs 12 function evaluations per

generation. Figure 5 shows the convergence normalized to the same number of function
calls. Figure 6 and 7 show the corresponding solutions after 20 and 180 generations of
the best 1+1 run out of the ensemble (the lines are iso-potential lines of the electric

field). After 20 generations the contour of the channel gets a clearly visible dent in it.
After 80 evaluations of the objective fimction, the algorithm has found a double-bump

shape to be even better, and after 180 calls to the solver, the optimum has been reached.
The value of the objective function has dropped to about 10 -a for the best run out of

the ensemble. This means that dispersion is ahnost zero and the channel will have very

good separation properties.

6.2. Multiobjective optimization

We then introduced the total deformation of the channel contour as a second objective
to be minimized simultaneously in order to minimize manufacturing costs. The second

objective was thus given by:

II

It" = Ep/2 (6.2)
i=1

where Pi are the shape parameters of the channel as introduced by Mohammadi, Molho

& Santiago (2000). The first objective remained unchanged. The algorithm used for this
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optimization was a SPEA with a population size of 20, a maximum size of the external

nondominated set of 30, and a mating pool of size 10.

Figure 8 shows the Pareto-optimal trade-off front after 80 generations of the algorithm,

and Figs. 9 and 10 show the corresponding solutions, i.e. optimized shapes of the channel.

One is now free to choose whether to go for minimal skewness at the expense of a higher

deformation (c.f. Fig. 9), choose some intermediate result, or minimize deformation in

order to minimize manufacturing costs and still get the lowest skewness possible with

the given amount of deformation (c.f. Fig. 10).

The results obtained with evolutionary optimization are comparable to the results of

the gradient based method. However, far less mathematics and complex formulas were

involved here, which leads to greater flexibility and shorter "time-to-solution".
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7. Conclusions and future work

Single and multiobjective evolutionary algorithms have been implemented and as-
sessed. The SPEA has successfully been extended to support targeting in objective space.

It has been shown that these algorithms are easy to apply to fluid dynamical problems

and that their solutions are comparable to those found by gradient based methods. In

cases where gradient methods cannot be applied or where they would involve too com-

plex mathematical calculations, evolution strategies are a good alternative to solve an

optimization problem or reduce the time needed to do so as part of hybrid processes.
Future and present work addresses tim acceleration of convergence of these algorithms

and their implementation in hybrid processes.
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Optimization of trailing vortex destruction

by evolution strategies

By G.-H. Cottet_, I. Sbalzarini:_, S. Miiller$ AND P. Koumoutsakos_

We apply evolution strategies to optimize the instability growth of several pairs of vortices
which model the wake of airplanes in landing configuration. For the case of two pairs,

the evolution strategy finds a set of optimal parameters strikingly similar to those found

in the linear stability analysis of Crouch (1997). The case of four pairs is also considered

and leads to a larger distortion of the tip vortex.

1. Introduction

Trailing vortices are naturally shed by airplanes. They result in a strong down-wash
which extends for several miles behind the plane and poses a hazard to following aircraft,

in particular, at take-off and landing. Several previous studies propose to alleviate the

hazard by introducing perturbations to trigger instabilities, and ultimately, break up the

vortices (Bilanin & Widnall 1973, Crow & Bate 1997).
Most of these studies have focused on exciting the Crow instability, which operates on

a single pair of counter-rotating vortices and has a wavelength much larger than the vor-
tex core size. Unfortunately, however, for realistic perturbation amplitudes (those which

would not cause large unsteady forces on the plane) excitation of the Crow instability

would lead to vortex destruction at large distances behind the plane that exceed current

FAA separation rules for aircraft in IFR conditions.
Recent studies (Crouch 1997, Rennich & Lele 1998) have considered instabilities unique

to several pairs of vortices which model aircraft wakes in landing configuration (Spalart

1998, see Fig. 1). Some of these vortices quickly merge, but others persist for long times.
At a distance of several spans behind a typical airplane, three persistent vortex pairs

can generally be observed, originating at the tips of the wings, the outboard flaps, and
the fuselage (respectively numbered 50, 52, and 55 in Fig. 1). Crouch (1997) has studied

the linear stability of two pairs of corrotating vortices (tip and outboard flap, 50 and 52

in Fig. 1). He identified several instability modes depending on the angle, wavelength,
and amplitudes of the perturbations that are imparted to each pair. The modes are
summarized in Fig. 2. Roughly speaking, a long wave instability (top sketch in Fig. 2),

similar to the Crow instability, takes place when the two pairs are excited in a symmetric

fashion. An instability with a wavelength shorter than for the Crow instability (but

still much longer than the core size) can also result (bottom sketch). The most efficient

instability (middle sketch) arises when the eigenmodes are non-orthogonal leading to

transient growth rates exceeding the maximum eigenvalue. This instability mechanism

produces long waves which, when the outboard vortices are initially unperturbed, grow
at a rate several times larger than the Crow instability for a single vortex pair.

t LMC-IMAG, University Joseph Fourier, Grenoble, France
:_ Institute of Computational Sciences, ETH Ziirich, Switzerland
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FIGURE 1. Sketch of vortex system shed by an airplane (Courtesy of J. Crouch, 2000). B is a
cross section of A as shown.

Based on the analysis of Crouch (1997), Crouch & Spalart (2000) propose a strategy
for breaking up the vortices that relies on appropriate cycling of control surfaces. Their

experiments and numerical simulations indicate that this strategy could reduce separation
rules.

Alternatively, Rennich & Lele (1998) have studied the system of vortex pairs with

opposite signs, corresponding to inboard and outboard flaps. Vortex filament and direct

numerical simulations (DNS) indicate in this case also large amplification rates for cer-

tain values of vortex separation times, which could also loosen the current mandatory
separations.

Despite the fact that the points of view adopted in these works differ in several re-

spects, in particular in the way the instability growth is measured, they have in common

the ability to provide us with a better understanding of the mechanisms by which the

cooperative instabilities of several pairs can result in enhanced growth rates. Moreover,

the configurations studied in these works are investigated with a view to implementing
them in actual wing designs.



Optimization of trailing vortex destruction 77

_,_, ," _,'

FIGURE 2. Three types of instabilities according to Crouch (1997). From top to bottom: long
wave, transient growth, and short wave instabilities.

One of the findings reported in Crouch (1997) and Rennich & Lele (1998) is the extreme

sensitivity of the overall dynamics with respect to the initial state of the vortex pairs.

In Crouch (1997), the most effective transient growth was achieved when the outboard

pair was not initially perturbed, while in Rennich & Lele (1998), early reconnection was

obtained for a particular value of the inboard vortices separation.
This motivated our attempt to perform a more systematic parameter search and iden-

tify the wake system which would produce the largest instability growth. In other words,

our goal was to revisit the above studies from the point of view of optimization.
The tools used in the present work are evolution strategies and viscous vortex methods.

On the one hand, evolution strategies have proven to be a flexible tool for optimiza-

tion of unsteady flow dynamics when traditional gradient-based methods would be very

difficult to iinplement. One the other hand, vortex methods are well adapted to wake
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FIGURE 3. Initial stage (left) and reconnection for a configuration of two vortex pairs of
opposite sign, according to Rennich & Lele (1998). Courtesy of S. Lele.

simulation as they require the discretization of only the region of vorticity. Note that
the work of Rennich & Lele (1998) is in part based on vortex filament method. Viscous

vortex methods offer the advantage of enabling calculations all the way to reconnection
(Cottet et al. 2000).

An outline of the paper is as follows: Section 2 recalls the basic features of evolution

strategies and vortex methods; Section 3 presents our findings, and Section 4 is devoted
to a discussion of results and future plans.

2. Approach

2.1. Evolution strategies

We want to minimize f(X), X E R g. Basic one-member evolution strategies (ES) consist

in performing successive mutations on the vector X followed by the evaluation of f. The
new vector is then selected or rejected depending on whether it improves (in which case

the mutation is said to be successful) or does not improve the value of f. The mutation
consists of a random walk of the vector X, the size of which depends on the success rate

of the mutation. The algorithm can be represented as the following iteration:

Xt+l = _ _"(t + atZt if f(Xt + otZt) < f(Xt),
[ Xt otherwise.

In the above formula, Zt denotes a random Gaussian vector with zero mean and unit

standard deviation. In order to speed the convergence, the radius o"t is updated according
to the success rate of the previous iterations. A high success rate means that one is far

away from the minimum and induces an increase in o"t. In this work we have implemented

the so-called 1/5 rule: the variance is increased if the success ratio during the last itera-

tions is greater than 1/5. In order to achieve faster convergence, mutation can be done

in an anisotropic fashion on the various components of the parameter vector. This leads

to the so-called covariance matrix adaptation technique. We attempted this technique in
the last stage of the iterations.
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2.2. Viscous vortex methods

Vortex methods operate on the vorticity formulation of the incompressible Navier-Stokes

equations (Cottet & Koumoutsakos 2000). The method we are using is a time-splitting

algorithm with alternating advection and diffusion. Advection is achieved by tracking

particles along flow trajectories. Particles carry circulation, which is updated to account
for stretching. Diffusion is dealt with by vorticity redistribution among nearby parti-
cles. To enable fast velocity evaluations, circulations are interpolated on a fixed grid

(vortex-in-cell scheme). The Poisson equation is then solved by a Fourier type method,
and velocities are obtained by finite-differences on the grid and then interpolated back

on particles. Finally, to maintain a smooth particle distribution, which is essential for

accuracy, particles are frequently re-meshed on a regular lattice. Systematic comparisons

with spectral methods have been done to validate this method as a tool for DNS (Cotter

et al. 2000).

3. Results

Our study focused on the case of two pairs of co-rotating vortices studied by Crouch

(1997). The parameters which the evolution strategy optimized were:
• the initial perturbation amplitude of the tip (_1) and outboard (_2) vortices

• the angles of the perturbation planes al and a2
• the wavelength of the perturbations,

• the separation between the two vortices, 5
• the circulation ratio between the outboard and tip vortices, F

Quantities were non-dimensionalized by the distance b0 between the tip vortices and the
total circulation. To work with parameters in the same order of magnitude as Crouch

(1997), the total perturbation amplitude was constrained to be below 10% of bo:

< 0.1.

The following additional constraints were imposed to remain within achievable design

configurations:

0.25 < _ < 0.4; 0.5 < A < 10; 0. < F < 0.5.

Note that the constraints on A allow for a wide range of wavelengths, varying from short

wavelengths of the order of a few core sizes to long wavelengths of the type found in the

Crow instability.
Our goal was to optimize the instability on the tip vortex. To measure its deformation,

we computed the average angle, inside the core of the tip vortex, of the vorticity vector
relative to the axis of the unperturbed vortex. More precisely, the objective function was

given by the formula

f : dz _x dA(z),
(_) _

where

A(z)-_ {(x,y),lw(x,y,z)l >_ 1/2]_lm_}.

Figure 5 shows the convergence history of the evolution algorithm. After iteration 150

the ES algorithm was run with the covariance matrix adaptation technique, which only

slightly improved the value of the objective function. It is not clear that at this stage a

global optimum has been reached.
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FIGURE 4. Convergence history for the evolution strategy.

200

al a2 el e2 5 F
[Optimal parameters 0.47 0.73 0.098 0.008 _0.26 _0.31 0.72
_Parameters in Crouch (1997) n/4 n/4 0.1 0. 0.3 0.4 0.7

TABLE 1. Comparison of the parameters found by the evolution strategy and those studied in
Crouch (1997).

The parameter values finally obtained by the ES are listed on Table 6 together with

the parameters reported in Crouch (1997) as leading to efficient transient growth. Some

striking similarities can be noticed between these two sets of parameters. In particular,

the ES has selected perturbations that are mostly located on the tip vortex, confirming

the observation in Crouch (1997) of efficient transient growth when the outboard flap

vortex was unperturbed. The wavelengths of the perturbations are also very close to the
ones given in Crouch (1997).

Finally Fig. 5 shows the evolution of the objective function for various parameter
vectors: the two sets of parameters shown in Table 1, parameters similar to the ones

found by the ES but with perturbations of same magnitude for the two pairs and a third

set of parameters obtained by optimizing on 4 pairs instead of 2 pairs. Theses simulations

confirm that, in the early stages of the dynamics, the evolution strategies have picked up

the most efficient parameters for two pairs. One can also notice that adding more degrees

of freedom to the optimization can pay off and lead to increased efficiency. However,
an inspection of the vorticity angle at later times show that the differences between the

configurations involving pairs of co-rotating pairs tend to disappear. A similar observation

was made in Rennich (1997) by considering a different measure of the perturbation
(namely the maximum displacement).
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FIGURE 5. Evolution of the objective function. -- : optimal parameters for 2 pairs; .... :
parameters of Crouch (1997); ........ : optimal parameters for 4 pairs; ----- : case of 2 pairs
with equal initial perturbations.

4. Conclusion

Our goal was to investigate whether optimization techniques could be helpful in de-

termining parameters enhancing vortex break-up in trailing vortices. These preliminary
results show that evolution strategies are a valuable tool to explore realistic configu-

rations in a systematic way. Their flexibility makes it easy to modify the number of

parameters as desired without having to reformulate the optimization problem. Note,
however, that considering configurations involving more than two pairs cannot be done

without keeping in mind that these configurations have to be in accordance with current

design constraints.
To keep the computational cost at a reasonable level, our study has focused on the

preliminary stages of the dynamics. However, because of the relative rotations of the

pairs, it is not clear that the trends observed initially persist for long times. In other

words, parameters leading to the greatest growth rates may not be those which lead to

fastest reconnection.

It thus appears necessary to elucidate the relevant time-scale on which optimization

should be performed.
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The astrophysical and geophysical flows group

Astrophysical and geophysical fluid flows are usually dominated by large lengths and

velocities, so the flows are often turbulent. The 2000 Summer Program focused on the

late stages of star formation, planet formation, sediment transport, and turbulence in the

upper ocean. Modeling and computing the turbulence within a protostar's thin accretion

disk, in which the primary flow is near-Keplerian, are made complicated by the strong
rotation and shear, the compressibility, and a small overall aspect ratio. The group's

work in star formation was motivated by an unsolved problem in mass and momentum

transport: to form a star, gas must move radially inward from the outer edge of the
disk and accrete onto the central object, but it also must maintain a nearly-Keplerian

azimuthal velocity as it moves. Therefore, the inward mass transport requires that the

moving parcels of gas give up some of their angular momentum (and energy) to the

ambient gas. The disk must, therefore, create a secondary flow to transport this angular
momentum radially outward. There is no known way to do this. The traditional astro-

physical literature suggests that turbulence within the disk is responsible for this angular
momentum transport, despite the fact that the required transport is in the same direc-

tion as the mean angular momentum gradient of the disk (which is contrary to our usual

expectation: turbulence usually transports quantities into regions where their densities

are relatively low). The group's goal was to determine how a secondary flow, turbulent or

otherwise, might carry out this transport and still allow mass to accrete onto the central

star fast enough to agree with observations.
Our group's motivation for our work in planet formation was inspired by the recent

discoveries of planets outside our solar system. Their large sizes and proximity to their

suns violate accepted scenarios of planet formation and bring into question much of what

has been previously written. Our group focused on the question of how turbulence and co-

herent vortices within the protoplanetary disk could promote or inhibit the accumulation

of dust grains into planetesimals (objects of sufficient mass that their own self-gravity

allows them to acerete mass in the turbulent disk environment).
The motivation for the work in sediment transport was the understanding of how

pollutants such as heavy metals and pesticides, which bind to sediment particles, spread
through harbors and rivers. The work in turbulence in the upper ocean was inspired

by recent observations that vertically propagating, internal wave packets in the upper
thermocline of the ocean may be important for sustaining turbulent mixing.

The research group of Barranco, Marcus £: Umurhan was faced with the difficulties of

unknown equations of energy and state in the disk (which in some parts is optically thin

and in others thick) and unknown boundary conditions (since the gas is in-falling at the

outer edge and joins at the inner edge onto the star through a boundary layer in which

magnetic fields are likely to be important). The group concentrated on formulating a

well-posed problem that was numerically tractable. They found that through judicious

use of asymptotic expansions, the boundary conditions and equations of state and energy

could be easily parameterized. Their analyses were based on the premise that turbulence

alone was not likely to solve the transport problems and that coherent vortices were

needed. This premise was bolstered by Orlandi's numerical calculations of cross-stream
mass transport in a shearing channel, which showed that coherent and numerically-
resolvable flow structures can account for this type of mass/momentum transport. Since

previous calculations as well as calculations by others indicated that subsonic vortices
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withorder-unityRossbynumbers(ratiosof theinertialto theCoriolisforces)wouldbe
themostlong-lived,theasymptoticsweredevelopedin thisparameterregime.Formal
asymptoticswerecarriedout,andthreesetsofself-consistentequationswerefound.It
wasshownthat all threesetshadthesameboundarycondition requirements as the

anelastic Euler equation. It was shown analytically that a barotropic protoplanetary disk

obeying any one of these asymptotic equations could not solve the transport problem. A
small amount of baroclinicity was required. The analysis showed that the vortices were

efficient transporters of mass and angular momentum and that only two or three vortices

at each radial location were sufficient for observed star formation rates. The asymptotics

were formulated for calculations in a thin, ammlar section of the protoplanetary disk, so

the equations could be mapped into a Cartesian domain. Although the equations were

periodic in the mapped azimuthal coordinate, they were not in the radial coordinate. By

applying a Rogallo transform to the equations, Shariff was able to make them periodic in

the radial direction as well and modify an existing code to solve the asymptotic equations.

Barranco &: Marcus considered the role of vortices in the process of aggregating dust

grains into large planetesimals. They found that grains moving initially in non-circular
and/or non-planar orbits with respect to the disk quickly moved into planar, near circular

orbits due to the drag of the gas within the disk when the flow was laminar. They
showed numerically that dust grains were attracted to vortices within the disk and could

create large (and strongly self-gravitating) density perturbations. This seems paradoxical

since it would be expected that the centrifugal force of a vortex would eject grains.
However, Barranco derived a simple physical argument why this is not so and went on

to numerically compute the attracting regions of the dust in or near the vortex. As a

function of the grain-stopping time, the attracting region changes from a single point
within the vortex to a ring within the vortex and then to a large ring around the vortex
(and in the plain of the disk).

Boersma numerically examined sediment transport by carrying out direct numerical

calculations of three-dimensional flow in a channel. The wavy bottom boundary was
designed to simulate both a rippled river or ocean bottom and previous wind tunnel

experiments. Like the experiments, the calculations of the fluid motion and the particle

paths showed that Langmuir-like vortices were created that were aligned in the longitu-
dinal direction. The particles tended to concentrate downstream of the wave tops.

Carnevale & Orlandi used two-dimensional numerical simulations to examine internal

waves in the upper ocean thermocline. In their numerical experiments, wave packets
propagated vertically in a manner that was consistent with the observed vertical scales

in the ocean. Strong packets generated turbulence that formed a continuous 'scar' of

small-scale perturbations in their wakes that were much longer than the size of the

packets themselves. The results are important due to their implications for turbulent
mixing in the upper ocean.

Philip S. Marcus
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Scalings and asymptotics of coherent vortices in
protoplanetary disks

By J. Barrancot, P. Marcus:_ AND O. M. Umurhan

Gas that is transported radially inward from the outer edge of an accretion disk and

onto a forming central star must be in a nearly Keplerian orbit at all radii. To do this,

it must give up part of its angular momentum and energy to the ambient gas, which

in turn advects angular momentum outward via a secondary flow. Here, we set up the
numerical calculation for computing this flow by obtaining simplified sets of 3D, asymp-

totic equations that are well-posed and can be computed by the same techniques that

are used for the 3D, anelastic Euler equation. The asymptotics allow an easy param-
eterization of the unknown equations of energy and state and boundary conditions. It

is shown analytically that the required mass and angular momentum transport cannot

occur if the protoplanetary disk is barotropic. However, a small baroclinicity allows it.

Scale analysis shows that if 20% of the protoplanetary disk is filled with vortices, then

the required transport can occur with a large enough radially inward mass flux to satisfy

the astronomical observations.

1. Introduction

The traditional picture of protoplanetary accretion disks is that they are quiescent,

without coherent features (Balbus & Hawley 1996). Some researchers have argued that

they are laminar (unless they are well-coupled to magnetic fields so that the Balbus-

Hawley instability can be invoked), despite the fact that their Reynolds numbers are

greater than 1014 . In contrast, we believe that the disks are likely to be filled with struc-
tures, and the goal of this paper is to lay out a framework to compute them numerically.
Our motivation is that we believe that long-lived vortices are the key to solving the

angular-momentum transport problem in accretion disks and also to understanding the
formation of planetesimals (Barranco & Marcus, this volume). Recently, calculations of
two-dimensional vortices embedded within accretion disks have been published (Adams

Xc Watkins 1995, Bracco et al. 1998, Godon & Livio 1999, 2000), but they were com-

puted with the quasi-geostrophic, shallow-water, or two-dimensional Euler equation, and

we argue below that none of these are valid for protoplanetary disks.

The hydrodynamics of a protoplanetary accretion disk are governed by the Euler equa-

tion (ignoring viscosity), the continuity equation, an energy equation, and an equation of

state, along with appropriate boundary and initial conditions. The equations are difficult
to solve numerically because: (1) There are two very large terms present in the equations

- centrifugal force and radial gravity. They nearly cancel and their small remainder gov-

erns the physics of the coherent features. (2) There are wide ranges of length and time
scales which demand high resolution and small time steps in numerical computations.

t University of California at Berkeley, Department of Astronomy
:_ University of California at Berkeley, Department of Mechanical Engineering
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(3) The energy equation is not known (depending upon location, the gas could be opti-
cally thick or thin). (4) The boundary and initial conditions are not well known because

the disk is the end-product of a collapsing, spinning gas cloud, and how that forms the

disk and continues to feed energy and matter in and out of it are not known. Without

knowledge of the energy equation and equation of state, it would seem hopeless to try

to compute solutions; however, we shall show that with a judicious choice of asymptotic

scalings, our ignorance of this information can be readily parameterized and progress can
be made.

2. Physical constraints and mathematical assumptions

Radio and infrared observations indicate that protoplanetary disks are cool. In fact,

they are sufficiently cold that the gas within them is not strongly ionized and cannot

couple to magnetic fields. Thus we have ignored the effects of magnetic fields. Because the

characteristic speed of sound c_ is nearly proportional to the gas temperature for most

relevant equations of state, the coolness of the disk at most locations (say, at distances
from the protostar greater than 1 A.U.),

cs/Vk - 5 << 1 (2.1)

where Vk =-- _/r is the Keplerian velocity, M is the mass of the central protostar,

G is the gravitational constant, and (r, ¢, z) are the cylindrical coordinates. We ignore

the self-gravity of the mass in the disk and treat the protostar as if it were a point mass.

Before considering a solution to the equations of motion that includes coherent features,

we first examine a base flow solution (denoted by an overbar) that is steady in time and

a-_xisymmetric and in which the radial and vertical components of the velocity are zero
= t_ = 0. In this case the radial and z components of the Euler equation reduce to

V_/r = GMr/R 3 + (1/p)OP/Or (2.2)

and

0 = GMz/R 3 + (1/f)OP/Oz (2.3)

where P and p are the pressure and density, and R is the spherical radial coordinate.
2

Because c s ._ P/fi, Eq. (2.3) implies that the disk is thin,

g/r _.. cs/Vk = _ << 1 (2.4)

where H is both the disk thickness and the vertical scale-height of/5. Eqs. (2.2) and (2.3)
along with the C-component of the Euler equation can be written as

(_/r)÷ = v4) + (vP)/_ (2.s)

where the gravitational potential is 4) -- -GM/R. The curl of Eq. (2.5) shows that

regardless of_the of the form of the energy equation or equation of state, if the flow were

barotropic, I<_ is a function of r only. Eq. (2.2) (along with the assumption that the

radial scale of/5 is not smaller than r) shows that 17"¢= Vk(r)(1 + (.0 (¢f2) ). Therefore
we can write

17"¢(r,z) = Vk(r) (1 + J2f(r) + J2g(r,z)) (2.6)

where .f and g are order unity and where g - 0 for a barotrope. Thus, although the disk
can be time-dependent and contain coherent and long-lived hydrodynamic features such

as vortices, the overall flow (denoted by the overbars) is nearly Keplerian.



Protoplanetary disks 87

It would appear that to make progress we either need to know the energy equation

and equation of state or the functional forms of f and g; however, in the following we
show that since the disk is symmetric about the mid-plane, we only need to know one

dimensionless, scalar property of V¢: fl - -H2(O2_z¢/cOz2)/(2Vk(ro)7) where 7 =- Lr/ro,

L_ is the characteristic radial length scale, i.e., r -ro of any coherent feature, and where

the derivative is computed at mid-plane (z = 0) and at the radial location r0 defined

below. Eq. (2.6) requires that/3y _< 52.

3. Equations, scalings and asymptotic reductions in the rotating frame

In a reference frame rotating with angular velocity f_ _ V¢(r = r0,z --- 0)/r0 =

_(1 + O (52)), the Euler and continuity equations can be written

Dv v 2 _ f_2 10P 10P
" ' ¢ + 2fl(v_ - _) + (3.1)

Dt r p Or fi Or

Dv___2_=_ 10P vrv_ 212v (3.2)
Dt rp 0¢ r

Dv 10P 1 015 (3.3)
z -- .31_ ----

Dt p Oz f Oz

Dp _ pV.v, (3.4)
Dt

where the velocity in the rotating frame is written in lower case and where I,_ in tile

rotating frame is

_,(r,z) = - (3f_(r -r0)/2)(1 + 0 (7,62) )-flc87(z/H)2/5 (3.5)

in which we have dropped the z-derivatives in v o higher than second.

Our requirement in this paper that 7 << 1 is important is the result of the following set

of physical arguments. Keplerian disks are special enviromnents. Numerical calculations
by others as well as our own experiences in hypersonic flows suggest that hypersonic and

supersonic waves are transients that radiate away and leave behind subsonic vortices.

Although this might not always be true, we believe that our best chance of finding
coherent structures is subsonic vortices. Also, from our experience in computing long-lived

2D (Marcus 1993) and 3D (Marcus 1984, Marcus L: _i_ekerman 1987) coherent vortices
embedded in shearing flows, we have always found that the vortices are ripped apart

by the shear unless their characteristic velocities are at least as large as the differential

velocity of the ambient, shearing flow. These two arguments along with Eqs. (2.4) and

(3.5) and the definition of 7 give the scaling

1 >> (v)/c8 _ 12L_/c_ = f_ro'_/c_ = 7/5 = L_/H (3.6)

where (v} is the characteristic value of re. Eq. (3.6) implies 7 << 5 and H >> Lr. It

also implies that the Rossby number Ro - {v)/2f_L_ is order unity. This is unlike the

physical conditions of the vortices embedded in the shearing, azimuthal flows on Jupiter,
where the rapid rotation of the planet, compared with the shear, makes the Coriolis force
dominate the inertial force. Here, they are the same order. The relation H >> Lr implies

that even though the protoplanetary disks are thin, they are not "shallow" in the context
of the shallow-water equations or quasi-geostrophic equations (which are derived using

the assumptions that H << L_ and H 2 << L2Ro, respectively). Thus subsonic, coherent
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vortices in a protoplanetary disk are not shallow, and attempting to use the shallow-water

equations or quasi-geostrophic equations to compute them is inconsistent.

Defining P - P + P, p - fi + jb, and e_ -.. /5//5 .._ /)/fi, we can write the Euler and

continuity equations in Cartesian form with vr _ v_, v¢ -+ -v,, (r - to) _ y, and

r0¢ _ -x. Keeping leading order terms to O (_2 e2,._):

Ot -V. uu_/p(ro,z) + 2f_uy 0['cox (3.7)

0Uy __ [ _ _ __0/_

o--i-- -v.  uu l (ro, z)) - - (3.S)Oy

OUZ it_ -- --01 -::_ --

Ot --V. [uuz/fi(ro,z) } _zf_ 2 (3.9)Oz

V. u = 0 (3.10)

Here the momentum u - fi(ro, z)v, fi_ _= fi(ro, z)_, and in deriving Eq. (3.10) we assume

that the time-scale is of the same order as the advective time (in the rotating frame) or
slower, (cf., Eq. (3.11) below). Note that acoustic and other fast waves are neglected in
this approximation.

We plan to solve Eqs. (3.7)-(3.10) numerically using the standard methods for the Euler

equation with an anelastic equation of state, but to see what the solutions might look
like and to make analytic progress, we now examine three different asymptotic regimes.

To do so, we choose units for the thermodynamic quantities, momenta, x, y, and z, such

that the non-dimensionalized quantities are order unity. Only the leading order terms to
O (_2, e2,3') are retained. Although the units of x, z, and uz will differ for the different

asymptotic scalings, all three share the following (where square brackets mean "units
of"):

[_] = p(r0,0) [/5] = [_]c_ [L_] = L_ :eH

[u,] = e[_]H_ [uy] = e2[fi]H2fl/[L,] It] = [L_]/eH_

[fi] = e2[_] [/5] = e2[p], (3.11)

where c_ is evaluated at the mid-plane of the disk at r = r0. The scaling for u_ follows

from requiring that the Rossby number be order unity. The length scale Ly results from

this and our desire to have the Mach number [v_]/c8 =- e. The scale of uy is chosen by
demanding that the Coriolis terms are of the same order as the pressure terms. As a
consequence of this last scaling, the x- and y-components of the advective derivative also

have the same order. The scaling for 15 follows from the definition of c_. The scaling for the
pressure deviations t5 arises from the requirement that the pressure and Coriolis terms are

of the same order in the y-component of the momentum equation. The scaling for _ comes

from the requirement that the fractional changes in pressure and density are the same
order. The choice of time scale comes from requiring that it is the advective time-scale. We

shall see that it replaces the dynamics continuity equation with the kinematic condition

that the mass flux is divergence-free. This removes a temporal degree of freedom, and so
sound and supersonic waves are removed from the system of equations.

The scaling for [n_] displayed in Eq. (3.11) as well as [n_] and [u_] have been left
unspecified at this point because there is some freedom in how we choose them. This

freedom will lead to different physical and dynamical regimes which we will show below.
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Equation (2.4), the scaling [L_], and the definition of "/show that e, % and 5 are not

independent but instead satisfy

e - 7/5 _< 1. (3.12)

The non-dimensionalized equations can now be written in terms of the (not yet speci-

fied) constants [L_], [Lx], and [u..],

O(u_ux/fi(ro, z) )
cOux _ - V ± • Ox
Ot \_(-;_o, Z) , Oz [Ux] [LA

cguy__V± ( u__u_ _ O(u_u_/fi(ro,z)) {[u_][L,]}
Ot " \f(_o,Z) / Oz [u_] [L:]

-2(u_ - fix) _ [Lx]2 0P _"[Lx] 2
[[Ly]2 } _ } (3.14)l [Ly]2

at \f(-_0,z)) az [ux] [L_]

OP ([ux][L.]}__z_[Ux][Lz][L'] } (3.15)Oz [u:] [Lz] l [u,] H H

where the _L subscript means the x and y components. The non-dimensional steady state

azimuthal velocity is

_ix = -_y + 3z2[L:]2/H 2 fi(ro,z) (3.16)

It should be kept in mind that unlike the momenta and thermodynamic quantities,
the non-dimensional z can be much greater than unity: the dimensional z is order H; the

non-dimensional z is order H/[L_] which can be big (see §3.2).

Without an energy equation, it is impossible to obtain an expression for /5 which is
needed in the buoyancy terms of the equations above, so we exploit a standard method

used in geophysical fluid dynamics. The fi is sensitive to the equations of state and energy

(and boundary conditions) because it represents a long-time balance within the disk of

energy sources and sinks (e.g., we cannot compute the fi in the earth's atmosphere without

taking into account the effects of ground heating, cloud cover, cooling, etc.). However,
the density disturbances /5 within the disk are created by advection of fluid parcels. If

the advective time is fast compared with the thermal time (which is unknown and due

to complicated physics), then/5 is nearly equal to that of an adiabatic displacement, and
if the time scales have the opposite ordering, then /5 is approximated as an isothermal

displacement. In the case where the two time scales are equal (which would be unusual

since they are determined by very different dynamics), an energy equation is needed.

Most previous computations of protoplanetary disks use an adiabatic approximation for

/5 and assume an ideal gas equation of state, and that will also be our starting assumption

(to be modified later if it is required).
We have found three different relationships for [L_], [L:], and [u_] that are physically

meaningful and yield mathematically consistent asymptotic equations. We believe them

to be exhaustive and present them below.
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3.1. Columnar dynamics

One set of asymptotic equations is obtained from Eqs. (3.13)- (3.15) by setting [Lz] =

[Ly] = _H, [iz] = H, and [uz] = e[uz]. Retaining terms to O (52, e2,7), we obtain

( ulu o/5
cO---t: -V±. _,fi(ro, z),] + 2uy Ox (3.17)

Ou: ( u±u_ _ 0/5 [,z (3.19)0--7-= -v±.\_(--_,_)) az

V± .v± = 0 (3.20)

These equations in which the 2-dimensional component of the velocity is divergence-

free describe coherent features whose lengths and velocities are similar in the plane of

the disk but are columnar in the sense that [Lz] 3>> [Lz] = [L_]. In these equations
there is no contribution from the z component of the advective derivative. The fluid is

decoupled from itself in the z direction. If the vertical layers in a coherent feature begin
to decouple from one another, then the the vertical gradients become large, the vertical

scale-height of the flow becomes much smaller than H, and the underlying scaling breaks

down. The dynamics would then become governed by the more general Eqs. (3.13)-(3.15)

which would tend to recouple tile layers. The decoupling of the flow in z makes it easy

to compute steady solutions to Eqs. (3.17)- (3.20), so these equations are particularly

useful to find steady solutions, but not to explore dynamics or test stability.

3.2. Round vortices

The second asymptotic limit comes from setting [L..] = [L_] = [Ly] = ell, and [us] =
[us] = [uj,

( 0/5
0-7-=-v k_-_o,z)/+2u_ ax (3.21)

(3.22)

au= ( u.tu= _ 0/5 e2P z (3.23)0--7-= -vt,_) az

0 = V. u (3.24)

Note, to be consistent, we have kept the (.9 (e 2) terms in the baroclinic /7 term in

Eq. (3.22) and in the buoyancy term in in Eq. (3.23). As we stated after Eq. (3.16),

z ,,, H/L_ = e -1. Thus the /3 term is actually order unity and the buoyancy term in

Eq. (3.23) is O (e) and must be retained. Qualitatively speaking, this scaling is valid for
nearly spherically shaped vortices.

3.3. Elongated dynamics

In this final set, [L_] = [Lz] = H and [u_] = [uz], resulting in,

Ou= ( 0/5
0---7-= -V. t,p(r0, z) ) + 2% ax (3.25)
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oP
0 = -2(ux - _(ro,z)(ay/2 + _z2)) (3.26)

Oy

- -v. ( uu_ ] _ o_ _ _zOu_ (3.27)
Ot \p(ro,Z). Oz

V.u = O. (3.28)

Vortices with this scaling are stretched in the azimuthal direction. Furthermore, the

dynamics in the radial (y) direction is geostrophic, making the effective Rossby number
in that direction zero. It can be shown that these equations, even though there is no time

derivative in Eq. (3.26), have the same boundary condition requirements as the anelastic

Euler equations.

4. Linear theory

In this section we examine the linear stability of the unperturbed disk using the asymp-

totic equations (3.25)-(3.28) derived for the elongated dynamics in §3.3. Stability (or

instability) computed with these equations does not guarantee stability (or instability)

when computed with the full equations, but any eigenmode computed with Eqs. (3.25)-

(3.28) whose length and time scales are consistent with the those of the assumptions
in §3.3 is valid. The dual purposes of this section are first to illustrate some possible

dynamics of the unperturbed disk and second to show that subtle changes in boundary
conditions can lead to big differences. For one choice of boundary conditions we show

that the disk modes exhibit algebraic singularities at some critical time tsing- However,

at early times prior to tsing the solutions are consistent with the assumptions used to

derive the asymptotic equations. Nonetheless, the prediction of a violent instability sug-

gests that when the full equations are used, the disk is either unstable or there are initial
conditions that lead to transient modes that grow before they decay. Even if the disk

is linearly stable when computed with the full equations, if the transients reach large

amplitudes they could trigger a finite-amplitude instability. This suggests that we look
for these transients in the numerical simulations. For the other set of boundary condi-

tions, stability properties change. This suggests that numerical simulations will need to

be computed with a variety of physically reasonable boundary conditions to understand

fully the physics of the disk.
We linearize Eqs. (3.25)-(3.28) about the unperturbed disk with momentum flux gx.

We choose the simplest energy equation and equation of state: the fluid has constant

density. This makes F5= 0, V • v = 0, and/3 = 0. Writing perturbed quantities with a

"prime" and using v rather than u as the independent variable, we obtain

(_ O), 0/5' 1 , (4.1)0 + O_ v_ = - 0---_-+ _vy

OP'
0 .... 2v; (4.2)

Oy

(0 0) 0/5' (4.3)_i + _ _ _'_- Oz

0 = V.v' (4.4)

We now consider two types of boundary conditions.
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4.1. Channel geometry

Here we use the boundary conditions similar to those in an inviscid channel flow:

' ' =0 aty= +l, (4.5)(i) v z =0 at z=_¢" and (ii) v_

with periodic boundary conditions in x. Making each perturbation quantity have x and

t dependence of ei(_t+k._), we combine Eqs. (4.1)-(4.4) into a single equation for/5,,

3 2 02P ' 02P '
-(w+_kxy) _+ Oz 2 -0, (4.6)

where the velocity can be expressed in terms of/5,:

1 0t 5

, _ + 2ik_P'. (4.7)

Equation (4.6) is separable, so we write

P' = _,,_dY)Zm(z) • (4.8)

In enforcing the boundary condition at z = +_, we find that

Zm(z) = cos((2m + 1)vz/2_), (4.9)

where m is an integer. The velocities in the x and y directions and the pressure are

proportional to cosines in z, and v'_ is proportional to a sine. The equation for _,_t is
now an equi-density equation with power-taw solution:

= (wm,+ ak_y'_ ½+i½_ (5 + 3iA_ (wmt+ ak_y_ ½-i½ A
_,.t \ 7-_t---_, / + \-5---7A ] \w,_----_--ak---T ] , (4.10)

where
l

A =_ 9(2k _ 1 , (4.11)

and where the frequencies w are labeled with two subscripts, w,,,t, and satisfy the disper-
sion relation

corot= akxcoth (_), for 2rd2m + 11- 3¢1k_1> 0 (4.12)

wme=iak, cot(_l ), for 2rrl2m+ll-a(Ik, l<0 ' (4.13)

and where g is a non-zero integer. The eigenmodes are unstable when wmt has a pos-

itive real part or when 2rrl2m + 11 - 3_lk, I < 0 and 0 < mod,(&r/IAI) < rr/2 hold
simultaneously.

4.2. Sliding box coordinates

In this section we show that the "sliding box" boundary conditions give algebraic rather

than exponential behavior. We introduce the "sliding box" coordinates that were previ-

ously used in studies (Marcus & Press 1977, Rogallo 1981 and Korycansky 1992) of plane
Couette and other shearing flows:

3
z_ =_x + _yt [- t _) =- y _. = z (4.14)
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Eqs. (4.1)-(4.4) are autonomous in the new spatial coordinates but no longer so in time.
Making all of the perturbed variables proportional to e i(k_9+k_) , the linearized Eqs. (4.1)

- (4.4) in the new coordinates are:

1 , (4.15)Ov_ = -ik_P' + -_v_
Oi

0 = -2v' x - i(ky - _k_P' (4.16)

Ov_ = _O p, (4.17)
O_ O_

= - 7k_t)vy + _ _"
0 ikxv'_ +i(k u 3 ^ , 0 v' (4.18)

Requiring, as before, that there be no vertical flow at _ = -t-_ requires that /5, be

proportional to Zm(_) where Zm and m are defined as they were in Eq. (4.9). Writing

_, = p(t)Zm(_)ei(k_O +k'e), Eqs. (4.15)-(4.18) can be combined into a single ordinary

differential equation in time for 7_,

9 2 d (2T+T2_---_)P+_k_-_

where we have used the temporal coordinate

7rZ(2m + I)2P = O, (4.19)
12

T == -_k.[- ky. (4.20)

Equation (4.19) has a regular singular point at T = 0 which shows that the solution P

will be algebraically unstable. P is given by,
1

(4.21)

where a and b are integration constants and depend on the initial condition.

All perturbations in which kyk_ > 0 have an algebraic singularity at tsing _ 2kJ3k_

and grow in time. Modes with kyk_ < 0 decay algebraically. This suggests that the unper-
turbed disk computed with the full equations of motion is either algebraically unstable or

has transients that grow before they decay. This behavior is different from that computed

with the channel boundary conditions in §4.1.

5. Discussion and conclusions

Although we have not yet numerically solved our asymptotic equations, we can draw
several conclusions about their solution. First, it is almost certain that they allow coherent

anti-cyclones (vortices opposite in sign to f_). Two- and three-dimensional numerical
calculations of vortices embedded in shearing flows show that if the shear and the vorticity

are of the same order, they must also be the same sign; otherwise, the vortices are

stretched by the ambient flow and destroyed (Marcus 1993). Moreover vortices embedded

in like-signed shearing flows with Rossby numbers less than or order unity (ours are

designed to be order unity by our choice of the asymptotic scalings) are very stable;
small ones tend to merge together and become large; when turbulence rips a vortex

apart, the fragments often merge and restore the vortex. Since the shear in a Keplerian

disk is anti-cyclonic, anti-cyclones would likely be stable in protoplanetary disks. Two-
dimensional simulations of near-Keplerian disks (Adams & Watkins 1995, Bracco et al.
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1998, Godon & Livio 1999, 2000) confirm this, and we expect the stability to remain
valid in 3-dimensional disks.

Moreover, because our solutions have Rossby numbers of order unity, they will be

in partial geostrophic balance (i.e. the Coriolis force will partially balance the pres-

sure gradient). Geostrophic balance makes anti-cyclones have relatively high pressures

in their interiors or positive/5 and cyclones have relatively low pressures or negative/5.

For isothermal or adiabatic perturbations (the types considered here), positive t3 goes

along with positive _ (see §3), which means that anti-cyclones in a protoplanetary disk
correspond to mass over-densities.

Our overall picture of mass and angular momentum transport in a protoplanetary
disk is that the perturbations of the in-falling mass at the outer edge of the disk create
anti-cyclones, or lumps of mass over-densities that are long-lived. In future work we shall

test this hypothesis numerically. However, the question still remains as to whether the

lmnps migrate radially inward. We can state with certainty that if the disk is barotropic
they do not. This can easily be seen from Eqs. (3.7)-(3.10) (or any of our three sets

of asymptotic equations.) In all cases, if _ = 0, the equations are invariant under the

symmetry z -_ -x, y -_ -y. Due to this symmetry, there is nothing to distinguish the

radially inward direction from the radial outward direction (other than the geometrical

curvature of the disk which is small compared to other small quantities and is ignored

in a first-order asymptotic expansion). This means that if a mass lump or anti-cyclone
were placed in the flow, it could not migrate radially. When the flow is baroclinic and

_ 0, this symmetry is broken, and the vortex is free to drift radially.

An important question to answer before tackling the equations numerically is whether

the secondary flow due to the vortices is large enough to transport the requisite angular
momentum radially outward. The inward mass flux that forms the star (due to the inward
drift of anti-cyclonic lumps in our picture and due to unspecified "turbulence" or laminar

inward flow in other scenarios) also carries angular momentum inward. The secondary
flow due to the vortices must compensate for this angular momentum flux which is r2_2kM

where M is the radially inward mass flux and equal to the rate at which the protostar
gains mass, and _k is the Keplerian angular velocity. The outward flux of momentum

due to secondary flows (including vortices) is approximately 27rr_H[u_][ux]/[p]Cf =
fC_22rcr2tt3[p]_, where we have used the round sealing in section 3.2 to estimate the

characteristic radial and azimuthal velocities of the secondary flow [uy] and [ux], C is the

correlation between the radial and azimuthal components of the velocity, and f is the

fraction of the disk filled with the secondary flow (vortices). Setting these two fluxes equal

and using (at r equal to one A.U. - the distance from the earth to the sun) [p] = 1.4 ×
10-°g/cm 3, r = 1.5 × 1013cm, H = 4.5 × 10Hcm, flk = 27r year -1, and M = 10 -s solar

masses per year (with one solar mass equal to 2.0 × 1033g), we obtain fCe 2 = 4 × 10 -3.
We do not know the value of C a priori; it must be computed. However, numerical

simulations of the vortices in Couette-Taylor flow in which the vortices are the main

transporters of the radial angular momentum flux have C _ 0.1. We set _2 = 0.2. (Our
physical assumption that robust vortices are subsonic restricts _2 < 1; our mathematical

requirement to obtain the asymptotics of the round-vortex equations requires that c2 << 1

so that _2 could be an expansion parameter. Setting _2 = 0.2 may be too conservative,
and in the future it may be necessary to obtain an asymptotic expansion for the disk

equations in 8 and _r that does not require _2 << 1.) With these values we obtain f = 1/5,
meaning that if one fifth of the disk were filled with vortices, then angular momentum
balance could be maintained with the observed mass accretion rates. We caution the
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reader that the estimates for the observed p and H could be incorrect by factors of 2

or more, and so could our scaling estimates for the values of [uy] and [ux]. However, it

is encouraging that the estimates of f are not several orders of magnitude greater than

unity.
Of course, the way to interpret these results from a physical point of view is that

computations (or the physics of an actual protoplanetary disk) provide the values of f,

C, H, u_, u_, and p, which in turn determine the observed value of M. With this in

mind, our goals in computing solutions to Eqs. (3.13)-(3.15) are: (1) Start with an initial

anti-cyclone embedded in a nearly-Keplerian, three-dimensional disk and determine if it
is stable and long-lived. Since we shall not know a priori its equilibrium shape, watch it

relax to its equilibrium and determine the physics of how it relaxes. (2) Determine the

anti-cyclone's sensitivity to the boundary conditions of the disk. (3) Determine how a

large anti-cyclone can be created when it is not initially present in the flow. Can it be

created by repeated mergers of much smaller (initial) anti-cyclones or from an initial set
of disturbances in t_? Determine whether an anti-cyclone can be created in an initially

undisturbed flow (i.e. the base disk flow written with the overbars). Is the flow linearly

unstable? If the flow is stable, can an anti-cyclone be created in the base disk flow if the

mass in-flow through the outer boundary condition is made time-dependent and variable

in _ (thereby creating mass "lumps" at the outer boundary)? (4) Determine the rate at
which the anti-cyclones drift radially inward as a function of baroclinicity and determine

whether it is sufficient to reproduce the observed mass accretion rates.
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The least understood step in the formation of planets is the creation of kilometer-

size planetesimals from centimeter-size dust grains. It has been suggested that vortices

within the protoplanetary disk may concentrate dust particles at their centers, which

may enhance the dust density enough to trigger a gravitational instability to clumping.

Our companion paper in this volume discusses the fluid dynamics of 3D vortices in a

protoplanetary disk. Here, we present preliminary calculations of the motion of dust

grains within such 3D vortices. We confirm that grains are focused toward the centers of
vortices, and offer a simple physical picture as to why heavy particles are not centrifuged

out.

1. Introduction: The planetesimal formation problem

A protostar forms when a dense region of the interstellar medium collapses due to its

self-gravity (the Jeans instability). Due to conservation of angular momentum, matter
cannot fall directly onto the central protostar, but spirals in, forming a protoplanetary
accretion disk. It is within such dusty protoplanetary disks that protoplanets form. See

Shu, Adams, & Lizano (1987) for a general review of star formation, and Lissauer (1993)

for a general review of planet formation.

1.1. Binary agglomeration versus gravitational instability

In the earliest stages of planetesimal formation, micron-sized dust grains collide and

combine to form larger particles - a process called binary agglomeration. However, it is

unclear whether this mechanism can efficiently work once particles reach centimeter to

meter sizes, since impact cratering and disruption become important. The mechanical and

chemical processes involved in grain agglomeration are poorly understood for particles

in this size regime. It would seem that two colliding "rocks" are just as likely, if not

more likely, to break one another apart as opposed to combining to form a larger one

(Weidenschilling 1984, Weidenschilling & Cuzzi 1993). Such slow growth for decimeter
particles via binary agglomeration leads to a problem with the timescale associated with
the formation of the giant planets. Rocky cores of several Earth masses must be formed

in order to gravitationally capture sufficient gas to create the extensive atmospheres of

the giant planets. However, this must be done in less than a million years, before the disk

gas is dispersed via accretion, photoevaporation, stellar winds, or close stellar encounters

(Hollenbach, Yorke, & Johnstone 1999).
An alternative theory is that if the protoplanetary disk is quiescent (that is, not tur-

bulent), the dust grains can settle into a thin sub-layer that might be dense enough to be

t Department of Astronomy, University of California, Berkeley
1: Department of Mechanical Engineering, University of California, Berkeley
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gravitationally unstable to clumping (Safronov 1960, Goldreich & Ward 1973). Whether
the disk is turbulent or not is still an unresolved and greatly contested issue. Even if

the dust could settle into a thin sub-layer at the midplane, Weidenschilling (1980) has
argued that a Kelvin-Helmholtz instability would develop between the dust-dominated

layer at the midplane (which orbits at the Keplerian velocity) and the gas-dominated
regions above and below the midplane (which orbit at sub-Keplerian velocities due to

partial support by the internal pressure gradient). This instability might generate turbu-

lence that would "kick-up" the dust and inhibit the gravitational clumping (Champney,
Dobrovolskis, & Cuzzi 1995, Cuzzi, Champney & Dobrovolskis 1993).

1.2. Vortices in a protoplanetary disk

Within the past five years, theorists have turned their attention to vortices within proto-

planetary disks, and the role they might play in angular momentum transport, as well as

the "seeding" of planet formation. Lovelace, et al. (1999) have found a linear instability
for nonaxisymmetric Rossby waves in thin, nonmagnetized, Keplerian disks. They noted
that in the nonlinear limit, such Rossby waves might break and coalesce to form vortices.

Bracco, et al. (1998), using the incompressible "shallow-water" equations, have shown

that long-lived, coherent, anticyclonic vortices form in a Keplerian disk that was initially

seeded with a random perturbation field. They noted that smaller vortices merged to

form larger vortices, reflecting the inverse cascade of energy from small to large scales

that is characteristic of 2D turbulent flows. Godon & Livio (1999a, 1999b, 2000) have
also studied the stability and lifetime of vortices in protoplanetary disks, and have shown

that anticyclonic vortices can survive in the flow for hundreds of orbits. Barge _: Som-

meria (1995) and Tanga, et aL (1996) have proposed that vortices in a protoplanetary

disk can capture dust grains and concentrate them in their centers. This would locally

enhance the grain surface density which may trigger gravitational instability and form
planetesimals.

The focusing of dust grains into protoplanetary disk vortices may seem quite surpris-

ing to those more familiar with laboratory flows in which heavy particles are typically
centrifuged out of vortices on a short timescale. The key difference here is gravity. What
follows is our physical picture for how vortices focus dust grains into their centers. The

base flow in a cool, thin disk (with very weak radial pressure support) is Keplerian:

Vk = Gg/-G---M_, and flk = GV/-G-M/r3, where Vk is the linear (azimuthal) velocity, _tk is

the angular velocity, r is the cylindrical radius from the center of the disk (where the pro-

tostar is) and M is the mass of the central protostar (Frank, King, & Raine, 1995). Phys-

ically, the Keplerian velocity is just the usual orbital velocity of any object in a circular

orbit about a central gravitational source. The Keplerian shear is anticyclonic and of the

same order of magnitude as the Keplerian angular velocity itself: _k =- rd_k/dr = 3--_k.
Marcus's extensive work with the Great Red Spot and other jovian vortices has shown

that in order for a vortex in a shear to be long-lived, the vorticity of the vortex must be

of the same sign as, and of at least the same order of magnitude as, the background shear

(Marcus 1988, 1989, 1990, 1993, Marcus & Lee, 1994). Consider one such anticyclonic
vortex in the disk orbiting the central protostar at a cylindrical radius r0 from the center

of the disk (see Fig. 1 & 2). The flow around the vortex on the side r > r0 opposes the

overall rotation of the disk, making the total angular velocity of the gas sub-Keplerian.

For r < r0, the anticyclonic vortex enhances the overall rotation of the disk, making the

angular velocity super-Keplerian. (We have ignored the fact that the average gas flow in

the disk is probably slightly sub-Keplerian due to partial support by an internal pressure
gradient - our argument will be basically unchanged.)
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FIGURE 1. Keplerian disk with anticyclone. Anticyclone is located at cylindrical radius r0 from

the center of the disk, where the protostar is located. Arrows indicate the total azimuthal velocity

in the inertial frame (mean velocity of the Keplerian disk plus that due to the anticyclone). The

mean azimuthal velocity (without vortices) is Keplerian: Vk = k/_GM/r, where M is the mass

of the central protostar. Note that the anticyclone increases the azimuthal velocity within the

disk for r < r0 and decreases the azimuthal velocity for r > r0.

Let us now consider the motion of dust grains in the disk. If there were no forces acting

on the grains other than gravity from the central protostar, the grains would naturally

follow circular, Keplerian orbits. However, drag between the grains and the gas can alter

such orbits in non-intuitive ways. First, let's consider a grain in a Keplerian orbit with

r > r0. When it approaches the vortex (or more precisely, as the vortex approaches

the dust grain since the grain is on an outer, slower orbit), the ambient flow will be sub-

Keplerian. Since the dust grain is going faster than the gas, any drag by the gas will cause

an azimuthal deceleration of the grain. This decrease of the grain's angular momentum

does not cause its azimuthal velocity to decrease, but instead, the grain moves inward
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FIGURE 2. Side view of Keplerian disk with anticyclone. The disk is believed to be "flared", with
scale height H increasing with radius. The anticyclone fills the disk in the vertical direction.

toward the protostar, which is also the direction towards the vortex center. On the other

hand, when a grain orbiting at a radius less than r0 encounters the anticyclone, the

ambient fluid flow is super-Keplerian and drag accelerates the grain azimuthally, pushing
it radially outwards and towards the radius of the vortex center. Thus, any type of fluid

drag causes grains to be deflected towards the location of the anticyclone. For similar,

but slightly more complex reasons, dust grains are also attracted (under some conditions)
azimuthally towards the vortex center.

Drag is not the only way that vortices can trap dust grains. We know that the Great

Red Spot on Jupiter sustains itself against dissipation by capturing small vortices and

"consuming" their vorticity. We propose to study this possibility for vortices in a proto-
planetary disk. We suspect that a long-lived vortex will be in a dynamic balance between

growth via mergers with smaller vortices and dissipation via Rossby wave radiation. We

hypothesize that as a large vortex consumes smaller vortices, Rossby waves will carry

away excess angular momentum, keeping the area of the large vortex nearly constant,

but that these waves will not drive out dust grains. In other words, the large vortex

consumes the dust, but not the area, of the smaller vortices, and hence the grain density
would increase.

2. Equations of motion

2.1. Ro _ 1, 3d vortices

The reader is directed to our companion paper in this volume (Barranco, Marcus, &

Umurhan, 2000) that discusses the details of finding vortex solutions within a protoplan-

etary accretion disk. Here, we would just like to highlight some key assumptions and

scalings that make our work significantly different from that of others who are studying
vortices in the context of planetesimal formation.

As previously discussed, the Keplerian shear in the disk is anticyclonic and of the same

order of magnitude as the Keplerian angular velocity itself: ak - rdi)k/dr = 3- _k- Since
the vorticity associated with an anticyclone must be of the same order as the background
shear if the vortex is to be long-lived, then the relative vorticity associated with the vortex

is of the same order as the "planetary vorticity" of the disk itself: [w] --_ak _ _k- (Here,

we use square brackets to indicate order of magnitude of the bracketed quantity.) This
immediately implies that the Rossby number for vortices in a Keplerian shear is of order
unity: Ro = [_]/2_k _ 1.

Another key assumption is that long-lived vortices should be subsonic; otherwise shocks

would develop that would quickly dissipate the vortex motion. The characteristic velocity
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FIGURE 3. Schematic representation of flow within a 3D vortex in a protoplanetary disk. Note
that the vertical velocity vanishes in the midplane of the disk.

of the vortex motion is: [v] _ (dVk/dr)L_ _ (L_/r)Vk, where Lr is the characteristic

radial extent of a vortex. It can easily be shown that hydrostatic balance in the vertical

direction implies cs/Vk _ H/r, where cs is the sound speed, and H is the scale height of

the disk (Frank, King, & Raine 1985). Hence, [v] _ (nr/H)c_, or L_/H ,,_ [v]/cs. Thus,
in order to have subsonic vortices, their horizontal extent must be less than the thickness

of the disk, and the vortices are 3-D, not 2-D.
The three dimensionality, as well as the fact the vortex flow is of order unity Rossby

number, has been neglected by all previous researchers (Adams & Watkins 1995, Bracco,
ctal. 1998, Sheehan, et al. 1999, Godon & Livio 1999a, 1999b, 2000). The quasi-

geostrophic and "shallow-water" sets of equations are not appropriate for the study of
vortices in a protoplanetary disk, and one must develop a new set from a rigorous asymp-

totic analysis. Again, the reader is referred to our companion paper for more details. In

this article, we are concerned with the motion of dust particles in and around 3D vortices.

Figure 3 shows a schematic of the type of 3D vortices we believe exist in protoplanetary
disks. For this preliminary study, we have assumed that the horizontal component of

the gas velocity is due to an elliptical patch of constant vorticity embedded within a

Keplerian shear flow (Moore & Saffman, 1971). The vertical component of the gas veloc-

ity is an approximate analytical fit for the vertical velocity of 3-D vortices in numerical

simulations of Taylor-Couette flow.

2.2. Lagrangian tracking o] particles

Now we consider the motion of individual grains of dust in and around a vortex in a

protoplanetary disk. Consider a vortex whose center is located at a cylindrical radius
r0 from the protostar. Henceforth, we work in a rotating frame so that the center of
the vortex is stationary. The angular velocity of the rotating frame, with respect to

the inertial frame of "fixed stars", is g/0 = _" We will also Carteslamze the

domain of interest: let x be the (negative) azimuthal direction (-¢ --+ x), y be the radial

direction (r = ro + y, so that y = 0 at center of vortex), and z be the height above the

midplane. The forces acting on a grain are gravity from the central protostar, Coriolis
and centrifugal forces, and frictional drag due to the relative velocity between the gas
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and dust particles. The equations of motion for the grains are:

(2.1)

GM 1

- (r0 + + + y) - 2 0x - (2.2)

GMz 1 .

- (to + y)3 _(z - t_g_'), (2.3)

where Vg_S.=,y,z is the velocity of the gas in the rotating frame, and t8 is the stopping time,
i.e., is the e-folding time for the particle to come to rest.

The exact form for the stopping time depends on the size and shape of the dust grains

as well as on the physical conditions within the protoplanetary nebula. The Reynolds

number for the flow around a grain is of order unity: Re = [v]d/v _ 1, where we have

taken the characteristic velocity in a vortex to be bounded by the sound speed Iv] .-_ c8 ,_

1 km/s, tim diameter of a grain is of order d _ 10 cm, and the kinematic viscosity for

the gas is of order v --- 106 cm2/s. In fact, this is an overestimate for the the Reynolds

number since the velocity we used in computing the Reynolds number should actually
be the differential velocity between the grain and the gas, which is typically much less

than the velocity of the gas itself. Thus, for this preliminary study, we assume that the
flow around grains is approximated by Stokes flow:

2

ts - 361Pg_i,_pg_dgrainv "_ 104s "_ 0.001 x Torb, (2.4)

where Pg_in is the density of an individual dust grain, of order a few g/cm 3, pg,_ .._
10 -9 g/cm 3 is the density of gas in the disk, dg_,,_ is the diameter of the dust grains, of

order a few decimeters, and Tomb is the orbital period of the vortex around the protostar,
of order a year at 1 AU (one astronomical unit, equal to the distance between the Earth

and the Sun, 1.5 x 1013 cm). It turns out that the mean free path of the gas molecules

within the nebula is of the same order as the size of the grains, so the Stokes flow

assumption may not be an entirely valid one. In this regime, the interaction between

the grains and the gas particles is a problem of kinetic theory, not fluid or continuum
mechanics. However, we don't expect that the qualitative behavior of the motion of the

dust grains will depend strongly on the exact nature of the drag. This will be explored
in more detail in future work.

3. Preliminary results

3.1. The settling o[ particles in the midplane

Figure 4 shows the 3D evolution of an ensemble of randomly placed grains in and around
a 3D vortex in a protoplanetary disk. For clarity, the vortex flow itself is not shown. The

vortex center is located at a distance 1 AU away from the protostar. Regarding the scale,

one unit on the axes corresponds to approximately 0.25 AU. Note how quickly grains

settle into the midplane of the disk. The timescale for the settling is a few stopping
times. This was expected as we have not yet included any turbulence within the disk.

Although the vortex does have a vertical component of velocity, it is zero within the

midplane. Most particles have settled in the midplane long before they encounter the

vortex, and thus are not excited by the vertical velocity of the vortex. We expect these
results to be fundamentally altered when we explicitly include the effects of turbulence.
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FIGURE 4. 3D plots of the evolution of an ensemble of grains in and around a vortex in a

protoplanetary disk. For clarity, the vortex flow is not shown. The center of the vortex is located

1 AU from the protostar. One unit on the axes corresponds to approximately 0.25 AU. The

x-direction is the azimuthal direction, the y-direction is the radial direction, and the z-direction

is the height above the midplane. Timestep between each snapshot is 10 orbital periods.
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FIGURE 5. Trajectories (projected into the midplane) of individual grains. The gray lines of
various shades indicate the streamlines of the gas flow around the vortex. The vortex itself is

not shown for clarity. Solid black lines are the trajectories of individual grains. T_ ----_t_/Torb is

the stopping time normalized by the orbital period• From the top down, T, = 0.01, 0.1, 1.0. First

column shows trajectories of grains that were started outside the vortex on Keplerian orbits.
Second column shows trajectories of grains started at the center of the vortex.

Turbulence will "kick up" the grains, preventing them from settling into a thin layer

about the midplane. Particles that encounter the vortex out of the midplane will be

excited by the vortex's vertical velocity, further stirring up the particle motion.

3.2. The spiraling of particles to the centers of vortices

Figure 5 shows the trajectories (projected into the midplane) of individual grains. The

vortex location and scale are the same as that described in the previous section. Here, we

vary the stopping time, now normalized by the orbital period (1 year at 1 AU for a solar

mass protostar): r_ __ t,/Torb. A shorter stopping time corresponds to smaller particles,

which quickly react to the gas flow. We expect that the trajectories of these smaller

particles will closely follow the streamlines of the gas. Longer stopping times correspond

to larger particles, which, because of their inertia, take longer to adjust to the gas flow.

In the first column of figures in Fig. 5, the grains start outside the vortex on Keplerian

orbits around the protostar. Note that the lighter particle immediately reacts to the

presence of the vortex, closely following the closed streamlines, yet slowly spiraling into
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FIGURE 6. Same as Fig. 4, but projected into the midplane of the disk. For clarity, the vortex

flow is not shown. The center of the vortex is located 1 AU from the protostar. One unit on

the axes corresponds to approximately 0.25 AU. The x-direction is the azimuthal direction, the

g-direction is the radial direction, and the z-direction is the height above the midplane. Timestep

between each snapshot is 10 orbital periods.
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FIGURE 7. Number of particles trapped within vortex as a function of time. The vortex
boundary is defined by the boundary of the patch of constant vorticity.

the center. The heavier particles follow their Keplerian orbits, not reacting to the vortex
until they get very close.

Also notice that whereas the lightest particle eventually spirals in very deep into the
center of the vortex, the heavier particles settle down onto orbits around the center of

the vortex. The longer the stopping time, the larger the radius of the final orbit. We

wanted to test this further by starting the grains an infinitesimal distance away from the
center of the vortex (see the second column of Fig 5). The lightest particle remains at

the center of the vortex; this is a stable point. The heavier particles are seen to spiral
out, eventually settling into orbits around the vortex center. In fact, the final orbit for

these particles is the same whether they start outside or inside the vortex. In the future,
we would like to further explore the exact nature of these "attractors".

Figure 6 shows the 2D projection into midplane of the same data shown in Fig. 4. One

can start to see the concentration of grains within the vortex. Figure 7 is a much clearer

illustration of this phenomenon. The number of grains within the vortex boundary (i.e.
the boundary of the elliptical patch of constant vorticity) is plotted as a function of time

(expressed in orbital periods). We observe that the density of grains inside the vortex

increases by a factor of roughly 20 in 100 orbital periods, consistent with the previous
results of Barge _ Sommeria (1995) and Tanga, et al. (1996).

4. Future work

There are many unresolved issues regarding planetesimal formation in vortices, specif-
ically with regard to turbulence in the protoplanetary disk. Until now, most have focused

only on whether 2D laminar vortices can capture dust in a 2D laminar disk. Even if a

vortex can capture dust grains, it has not yet been demonstrated that this triggers gravi-
tational instability, given that disk turbulence prevents the dust grains from settling. All
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previous research on disk vortices has been 2D, and therefore unable to even consider the
vertical settling of dust grains within a vortex. Our research will focus on 3D vortices,

and we will be well-positioned to tackle these issues. Specifically, we want to examine
whether vortices laminarize the flow in their interiors (the way laboratory vortices do),

shielding the captured dust from the turbulence and allowing the grains to settle into a

dense enough layer that becomes gravitationally unstable. We also want to examine the
effect of the vertical velocity within the vortex on the accumulation of grains.
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Particle distributions in the flow over a wavy wall

By Bendiks Jan Boersma_

In this paper we will present the results of direct numerical simulation (DNS) of the
flow over a small amplitude wavy wall. The evolution in space and time of particles are

released in this flow will be examined. It will be shown that small waves on the channel

bottom can generate large longitudinal vortices similar to Langmuir vortices that are
observed in flows with waves at the free-surface. The simulation results show that the

concentration of the particles is maximal on the downstream side of the wave crest.

1. Introduction

Water flow over a rippled bottom is an important flow geometry in civil engineering

applications. Knowledge of flow statistics and sediment transport in such a geometry is
useful for the maintenance of coastal structures, harbors, and rivers. Moreover, pollutants

such as heavy metals and pesticides tend to chemically bind to the sediment particles.

Ripples on river beds have in general a complicated three-dimensional shape. In this

paper we will study a slightly simplified problem, namely the sediment transport over a
smooth two-dimensional nearly sinusoidal bottom with a small amplitude.

In the recent literature, various experimental and theoretical/numerical results are

reported for such a geometry (see for instance De Angelis et al. (1997), Cherukat et al.

(1998), and Gong et at. (1996)). De Angelis et al. (1997) and Cherukat et al. (1998) report
results obtained from DNS. The amplitude of the wave in these simulations is relatively

large, which results in a separated flow downstream of the wave crest. Gong et al. (1996)
report wind tunnel experiments for the flow over a wavy surface with a relative small

amplitude. They shown that in a flow over a wavy wall without flow separation, large

longitudinal vortices similar to Langmuir vortices (Leibovich (1983)) are generated. This
observation is supported by a theoretical analysis performed by Philips et al. (1996).

In this study we will use DNS to simulate the flow over a low amplitude wavy wall. The

amplitude of the waves on the channel bottom in the DNS is comparable to those used
in the wind tunnel experiments of Gong et al. (1996). The Reynolds number based on

channel height and bulk velocity is 3,500. The wave length of the waves on the channel

bottom is equal to the channel height, and the amplitude of the waves is 5% of the

wavelength (or channel height). The flow solver used for the DNS is very similar to the

one used by Van Haarlem et al. (1998). To study sediment transport, small spherical

particles are placed in the flow and their motion is tracked in space and time.
In §2, we will give the governing equations and we will briefly discuss the solution

techniques. In §3, we shortly' discuss the equation for the sediment particles. Finally, in

§4 we will present results both for the flow and sediment particles. In §5 we will give

some conclusions.

t Delft University of Technology, Laboratory for Aero- and Hydrodynamics, The Netherlands
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FIGURE 1. The computational domain.

2. Governing equations

In this section we will give the governing equations for the flow over a wavy wall and
briefly discuss the solution technique which has been used to solve these equations.

The physical domain is shown in Fig. 1. The wave on the bottom is nearly sinusoidal.
This is for computational reasons only. A fully sinusoidal bottom in combination with a

flat surface can not be calculated using an orthogonal grid. Prom a computational point

of view, an orthogonal grid is preferable over an non-orthogonal grid. With help of the
following two-dimensional orthogonal coordinate transformation, the physical domain is
mapped onto a rectangular computational domain.

x = -x' + A sinh(-kz') sin(kx'), (2.1)

Y = Y_, (2.2)

z = -z' - A cosh(-kz') cos(kx'), (2.3)

where x, y, and z denote the coordinates in the physical domain (Fig. 1) and x ', y', and z t

denote the coordinates in the rectangular (computational) domain, with A the amplitude
and k the wave number. With help of vector algebra (see for instance Morse and Feshback

(1953)), the Navier-Stokes equations in the transformed computational domain can be

written as (we have dropped the primes for convenience):

a--7+ _ t,_ + -b-Ty + --b7-z/ + _ ,,"_ - _ =

1 OP 1 (OhT_ cOh2Tx_ c9h7_ _ r_ Oh %_ Oh
p h cOx + -_ \ cox + CO----y- + COz ] + h 2 COz h _ cox + Fz , (2.4)

Ov _ ( cOhuv cOh2vv Ohvw-57+ \ o_ +-8_y + Oz 1=

10P 1 ( Ohr_y Oh2r_y OhT_
- p O---y+ -_ \ Ox + O----y--+ Oz / + F_, (2.5)

Ow 1 ( Ohuw coh2vw
o-7+_\ o2 + o--V-

1 COP 1 (OhTx:

ph COz + -_ \ cOx

cOhw2_ u( Oh Oh)+ coz ]+_ w_-uN =

coh2_'yz cOhTzz _ rxz cOh Txz cOh

+ cO-----Y---+ cOz ] + h 2 cOx h 2 cOz
+ F_, (2.6)



Particle distributions in the flow over a wavy wall 111

with the geometric scale factor

h = _/1 - 2Aksinh(kz) cos(kx) - A2k 2 cos2(kx) + A2k_ coshe(kz),

and u, v, w the velocity components in the x, y, and z direction respectively, with p the

pressure and _'0 the Newtonian stress term. The components of vii are given as follows:

L

0. 10v l

Tgy : 2V

[10v Owl_ :.[_+_ ,

0 w u oh w Oh] (2.7)_-_= 2_, _ (_-) + ._ _J

In which u is the kinematic viscosity of the fluid. The equations given above are non-
dimensionalized with the mean friction velocity U. at the channel bottom and the channel

height H. In the streamwise and spanwise direction, periodic boundary conditions are
used. At the channel bottom no-slip boundary conditions are used, and at the surface free-

slip conditions are used. The normal component of the velocity is also set to zero at the
free surface. The flow in the channel is driven by a constant pressure gradient (2pU_./H)

in the x-direction. The spatial derivatives in Eqs. (2.4)-(2.7) are integrated with help of a

fully central second-order finite-volume method on a staggered grid. The time integration
of Eq. (2.4)-(2.6) has been carried out with a second-order Adams-Bashforth method.

The pressure-correction method is used to satisfy the incompressibility constraint.

3. Particle equation

The motion of a small spherical particle, under the assumption that the lift force,

Basset history force, added mass force, and pressure gradient force are small (see Maxey

and Riley (1983)), can be described by the following equation (Maxey and Riley (1983))

7rppa3 dup = 6_-#(uf - up) + 5¢r(pp - Pl)a3 g,

dxp _ (3.1)
dt up,

where Up is the particle velocity, xp the particle position, a the particle radius, uf the

fluid velocity, pp the particle density, pf the fluid density, and g the gravity. The first
term on the right-hand side of Eq. (3.1) denotes the Stokes drag and the second term

the gravity on the particle. Equation (3.1) can be rewritten as

dup _ 1 (ul - uv) + pp - P-----'-L9,
dt T Pp

dxp _ (3.2)
d--_-- up,
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FIGURE 2. The wall normal velocity in the wavy channel. (The flow is going from left to right.)
W ranges from -2.50 (Level 1) to 0.81 (Level 15).

FIGURE 3. The streamwise velocity u in the cross flow plane.

where 7 is the particle relaxation (or response) time given by

2pfa 2

_-- 9ppv" (3.3)

Typical radii of sand grains are 10 -5 to 10 -3 meters, and typical densities are 3000kg/m 3,

which results in v _ 10 -2 and (pp - pf)/pp ._ 0.7. The time integration of Eq. (3.2) is
performed with the same method and time step as the Navier-Stokes equations. The

particle velocities at the particle positions Xp are obtained with help of a quadratic

interpolation using 27 neighboring velocity points. Periodic boundary conditions for the

particles are used the stream- and spanwise directions. When a particle reaches the

bottom of the channel, the sign of the vertical velocity is changed, i.e. the particle bounces

back. When a particle reaches the surface of the channel, its vertical velocity component
is set to zero and the gravity force will pull it back into the flow.

4. Results

In this section we will present some results obtained from the DNS. All simulations have

been performed on a computational grid with 256 points in the streamwise direction, 128

points in the spanwise direction, and 96 points in the wall normal direction (all uniformly
spaced). The Reynolds number based on U. was equal to 250. The grid size in the wall

normal direction is this 250/96 _ 2.5Y +. The domain size in the streamwise and spanwise

direction was 5H and 3H respectively, which corresponds to a grid spacing of 5Y + in the

streamwise direction and 6Y + in the spanwise direction. This grid should be fine enough
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FIGURE 5. The streamwise (--), spanwise ( .... ), and wall normal (........ ) rms profiles

averaged over the streamwise and spanwise direction.

to capture all important scales of motion. The statistics we will present in this section

are calculated over 20 independent samples, each separated by O.1H/U. in time.

Figure 2 shows an instantaneous plot of the vertical velocity in the wavy channel. Just

upstream of the wave crest we observe a rather large positive (upward) velocity. Behind

the wave crest the velocity is negative.

In Figure 3, we show an isosurface plot of the averaged axial velocity in the cross flow

plane. The two large structures visible in this figure are due to a Langmuir type circula-

tion, Leibovich (1983), which is induced by the waves on the channel bottom. Numerical

experiments with smaller and larger spanwise domains also show this phenomena. A de-
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F[GURE 6. An instantaneous particle distribution in the top and bottom plane of the wavy
channel (bin width = H/40).

F[ounE 7. The particle distribution in an x - z plane.

tailed theoretical explanation of the physical mechanism behind this phenomena can be

found in Philips et al. (1996) and experimental verification in Gong et al. (1996).

The axial velocity profile is shown in Fig. 4 at various positions along the wavy channel.

Our simulation does not show flow separation (or back flow) as has been reported by

other researchers, Cherukat et al. (1998) and De Angelis et al. (1997), for channels with
slightly larger wave amplitudes• The analysis of Philips et al. (1996) shows that it is

unlikely to observe Langmuir type circulation if flow separation occurs. This is probably
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FmuaE 8. The particle concentration along the wave (the flow is going from left to right).

the reason why this phenomena is not observed by Cherukat et al. (1998) and De Angelis

et al. (1997).
To finish the presentation of the flow statistics, we show in Fig. 5 the axial, spanwise,

and wall normal root mean squire profiles averaged over the streamwise and spanwise di-

rection in the wavy channel. These rms-profiles compare reasonable well with the profiles

reported by Van Haarlem et al. (1998) and Pan & Banerjee (1995) for flat channels. The
values of the rms maxima in the wavy channel are slightly lower than in the standard

channel.

4.1. Particle statistics

Once the flow has reached a statistical steady state, half a million particles are randomly
distributed over the channel. The motion of these particles is governed by Eq. (3.2). The

simulations are continued for 3H/U, to reach a statistical steady state for the particles.

Statistics are then gathered over another additional 2H/U,. For the statistical analysis,
the channel is in all three directions divided into 80 equally spaced bins over which

particle concentrations are computed.
An instantaneous particle distribution is shown at the top (-H/80 < z < 0) and at

the bottom of the channel (-1 < z < 79H/80) in Fig. 6. The two long streaky structures

at the channel bottom are probably caused by the longitudinal vortices generated by the

wavy bottom (see also Fig. 3).
Figure 7 (top) shows the instantaneous particle distribution in a x - z plane. Most

particles are laying on the bottom of the channel or are very close to it; this is, of

course, due to the gravity force. Just above the wave crest, we also observe slightly higher

particle concentrations that are probably caused by strong shear stress fluctuations at
the channel wall upstream of the wave crest which will shoot particles back into the flow.
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FIGURE 9. The particle concentration (_) and the local wall shear stress (.... ) along
the wave wall.

The mean concentration along the wave is shown in Fig. 6. The particle concentration has

its maximum just behind the wave crest and has its minimum just before the wave crest.

The sediment concentration is often modeled (see Blondeaux (1990)) with a relation of
the form,

cp = (4.1)

where Cp is the sediment concentration and a and/_ are empirical constants. In Fig. 9,
we show a plot of u, and the particle concentration (see also Fig. 5) as a function of the

axial coordinate. Clearly the particle concentration is minimal at the location where u,

is maximal. The profile of the wall shear stress is nearly symmetric, and if it is raised

to some power fl, it will not describe the particle concentration shown in Fig. 8. An

additional gravity term in Eq. (4.1) will probably help, but it will not predict the high
particle concentration just downstream of the wave crest.

5. Conclusion

In this paper we have presented results of a DNS of the flow over a wavy wall with

suspended particles. It has been shown that the waves at the channel bottom can generate
large longitudinal vortices similar to Langmuir vortices observed in flows with waves

on the surface, Leibovich (1983). It is not likely that these longitudinal vortices are a

computational artifact because these vortices are also observed experimentally by Gong
et al. (1996). Furthermore, it has been shown that the sediment particle concentration has

its maximum just downstream of the wave top (on the downstream side). The frequently
used relation that the sediment concentration is related to the shear stress does not seem
to hold.
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Propagation of internal wave packets in the
thermocUne

By G.F. Carnevale_ AND P. Orlandi_

Internal wave packets propagating vertically in the oceanic thermocline are investigated
with numerical simulations. For a typical set of environmental and packet parameters, it

is shown that linear dispersion will have a significant effect on the spreading and decay in

amplitude of these packets. Sufficiently strong packets are shown to generate turbulence
that forms a continuous 'scar' of small-scale perturbations in their wake.

1. Introduction

Internal wave groups or packets play an important role in the dynamics of the oceanic

thermocline, the upper few hundred meters of the ocean where the temperature changes

from high surface values to the much lower values below. Recent observations (Alford
and Pinkel, 2000) show vertically propagating wave packets at depths from 150 to 350

m. These packets have vertical extent of about 50 m with internal vertical wavelengths
of about 12 m and are associated with overturning events with vertical scales of about

2 m. Because overturns can lead to small-scale turbulence and mixing, they form a

subject of intense investigation. Recent theoretical analysis by Thorpe (1999) provides
a criterion for determining whether the small-scale turbulence generated by a packet

will be left behind in just small patches or in continuous 'scars' much longer than the

size of the packet. Stimulated by these developments, we have embarked on a numerical

investigation of internal wave packets. Numerical simulations in this area may be of

great benefit because the available oceanic data is primarily one-dimensional, and the
full three-dimensional structure obtainable through simulation may aid in deciphering

observational data.
Assuming a constant background Brunt-Vaisala frequency, N, and ignoring the effects

of the earth's rotation, the intrinsic frequency for internal waves is

N kh (1.1)
O" :

k'

where k is the magnitude of the wavevector and kh is the magnitude of the horizontal

component of the wavevector. The observed frequency for one of the wavepackets in the

Alford and Pinkel (2000) data is 4 cph. This is higher than the ambient N _ 3 cph.

Since ama_. = N, it is assumed that the observed frequency for this packet is the sum of

the intrinsic frequency plus a Doppler shift. To predict this shift, it is necessary to know

the wavelength of the packet, the magnitude of the ambient current, and the ambient
current's direction relative to the packet propagation direction. Alford and Pinkel (2000)

t Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr.,
La Jolla, CA 92093

:_ Universit_ di Roma "La Sapienza" Dipartimento di Meccanica e Aeronautica, via Eudos-
siana 18 00184 Roma, Italy
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suggest that the intrinsic frequency for their packet with observed frequency of 4 cph

is near 0.14 cph, which leads one to a wavelength of 180 m. This suggests that the

horizontal wavelengths in both directions are much larger than the vertical wavelength.
For our numerical modeling this represents a difficulty. We are reluctant to introduce

anisotropic grids for fear of tile distortions that might_result, especially when applying

simple sub-grid scale models. Thus, in this preliminary work we decided to consider only

the case in which horizontal and vertical wavelengths were equal. The corresponding
intrinsic frequency would then be about 2 cph which would still be, consistent with the

observed packet, just requiring less of a Doppler shift to match the observed frequency.

As for the amplitude of tile observed packets, this can be given in terms of the peak
magnitude of the observed strain rate Ow/Oz. The maximum value of vertical strain rate

in the Alford and Pinkel (2000) observations is approximately N, and in the case of the
particular packet discussed above, it seems that the maximum is about 0.38N.

In what follows, we will examine the evolution of a particular wave packet with both
two- arid three-dimensional simulations. In an attempt to reproduce the kind of behavior

evident in the observations, we began with two-dimensional simulations in a domain of

200 m in both width and depth. We used a packet with non-dimensional wavenumbers

of 12 in both directions corresponding to vertical and horizontal wavelengths of (200

m)/12 _ 17m. Our 2D simulations had an effective resolution corresponding to a cutoff

wavelength of _ 0.8 m. Using these parameters allowed us to perform a large number of
simulations in a reasonable period of time and to capture the basic phenomena of interest

down to scales slightly smaller than the overturning scale. To follow this phenomenon
in DNS with all relevant scales well resolved would require resolution from 200 m down

to a few cm, which is impractical even in two dimensions. Thus, in tile two-dimensional

simulations, we had recourse to hyperviscosity (with the Laplacian taken to the eighth
power). At this point we have only perfornmd tile three-dinmnsional simulations with

resolution down to wavelengths of _ 3 m and with Laplacian viscosity and diffusivity,
and this nfisses much of the smaller scales of interest. Nevertheless, even these under-
resolved three-dimensional sinmlations capture some features of interest.

The two-dimensional simulations illustrated here are from a spectral code dealiased

with the 3/2 rule (Orszag, 1971). Although there are 768 wavevectors used in each direc-

tion, after application of the 3/2 rule this leaves only 512 active modes in each direction.

The three-dimensional results shown are from a finite difference code with a staggered
grid of 128 points in each direction.

2. Linear propagation

The linearized version of the Boussinesq evolution equations can be used to obtain a

model of the internal wave packet. Tile vorticity and density of a plane internal wave can
be written dimensionally as

(aax, coy, _z, p') = Aek exp i(k. r - _t), (2.1)

where A is an arbitrary amplitude and e is the eigenvector

ek = (gkku/Nhn, -9kk_/Nhn, O, Po). (2.2)

Taking a linear superposition of such waves distributed continuously in wavevector space

and centered on a particular wavevector, say k0, would produce an internal wave packet.
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For example,

with

(co, p') = Re f G(k - ko)ek ei(kr-at)dak,
(2.3)

a2 b2 c2 )G(p) - Aexp -_-p_ - __p2 _ ___p_ , (2.4)

where a, b, and c are length scales, represents a propagating ellipsoidal packet. A slight

generalization using simple coordinate rotations will also permit an arbitrary choice for
the orientation of the ellipsoidal envelope relative to the crests internal to the packet.

Within the envelope, the vorticity and density fields will have a phase velocity in the

direction of ko and group velocity

e9 = Vk_k, (2.5)

which is perpendicular to the phase velocity.
By varying the dimensions a, b, and c, we can change the shape of the packet as needed.

A likely candidate for the packets whose effects are observed in Alford and Pinkel's (2000)

data would suggest that at least one of these lengthscales is very large. For the present
calculations we take a to be infinite. Then we chose b and e and the orientation of the

system to be such that the envelope is an ellipse with major axis aligned along the
direction of propagation. Other choices may also be of interest, but that will be explored

in future work. With the ellipse as chosen, the phase velocity is directed along the short

axis and the group velocity along the long axis. In a numerical simulation, the packet

can only be approximated, with the integral replaced by a discrete sum of wavevectors.

By using (2.3) and (2.4) with t = 0, we are able to construct the initial condition for a

packet that is both reasonably confined in space and well resolved internally.
The first issue that we need to address is the dispersive spreading of the wave packet.

Simple arguments suggest that the physical extent of the wave packet will grow as A%t
in the direction of the group velocity, where Ac 9 represents the spread in group velocities

calculated for the individual wavevectors that contribute significantly to the wave packet.

We can make some crude dimensional estimates for the rate of dispersion by setting

c9 _ N/ko and Ac 9 _ (N/k2)Ako, where Ako measures the spread of wavenumbers in
the packet. If we call Ax0, the initial length of the wavepacket, then the time ta in which

the packet will double in size can be found with an estimate for the uncertainties for tile

positions of the various components of the packet given by Jackson (1962):

Ax = _/(Axo) 2 + (ACgt) 2. (2.6)

The doubling time is given by td "_ vr3Axo/A%, and the distance that tile packet can

travel before doubling is

• lax0 = v k0/ak0. (2.7)

In Fig. 1, we show the evolution of the density perturbation field during the propa-

gation of our packet following purely linear dynamics. In each panel, only the contour
level corresponding to 0.51p'/po[ is drawn. Positive and negative values have not been

indicated, but clearly the sign of p' will alternate from one wave crest to the next. We
see that the packet propagates along the diagonal. This is in agreement with the fact

that the wavevector is k = (12, 12) and that the group velocity is perpendicular to this.

It is less obvious from the few panels that we can include here that the phase of the

waves within the packet advances in the direction of k. The average speed of the packet
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(a)

%
(b)

(c) (d) "_

"%
FECURE 1. Contours of the magnitude of the perturbation density IP'/Pol from a simulation of
the linear propagation of a wavepacket. The domain size is 200 m on each side. The vertical
axis is depth. The only contour level drawn is that at 0.5 of the maximum field value. Tile time
sequence of the panels is a) t=0, b) t=60, c) t--120, and d) 210 in units of N -1 _ 3 rain.

in propagating from one corner of the domain to the opposite corner is correctly given
by Icgl. Furthermore, we see that the width and length of the packet grow to a little
more than double their original values in the time it takes to cross from one corner of

the domain to the other, and this is correctly predicted by the formula (2.7). During the
period of evolution illustrated, the peak amplitude of the packet decays to 25% of its
initial value.

Although the amplitude of the packet can be changed arbitrarily in this purely linear

simulation, we may simply assign an amplitude to see the effect of such a packet on the
full density field. This is done in Fig. 2. The amplitude used represents fluctuations in
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(a) (b)
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FIGURE 2. Contours of p/po from a simulation of the linear propagation of a wavepacket. The

domain size is 200 m on each side. The vertical axis is depth. The time sequence of the panels

is the same as in Fig. 1. The contour increment is such that the vertical separation between

unperturbed isopycnals is 8 m.

Ow/cgz about five times tile maxiHmm actually observed in the Alford & Pinkel (2000)

data. Nevertheless, we have used this packet with exaggerated amplitude to more clearly

illustrate the nature of the linear propagation. In such a strong packet, there are regions

of strong overturning, which, if the packet is not propagating too rapidly, would develop

convective instability under the full nonlinear dynamics.

3. Nonlinear propagation

Having determined that our packet propagates correctly under linear dynamics, we

then investigated its evolution with the complete Boussinesq equations. The amplitude
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(_) (b)

(c) (d)

FIGURE 3. Contours of the magnitude of the perturbation density IP'/Pol from a simulation of
the nonlinear propagation of a wavepacket with max Ow/Oz ,_ 0.38N. The domain size is 200
m on each side. The vertical axis is depth. The only contour level drawn is that at 0.5 of the
maximum field value. The time sequence of the panels is the same as in Fig. 1.

of the observed packet discussed in the introduction is such that the maximum value

of the strain rate cgw/Oz is about 0.38N. With the packet amplitude set to match this

value as its maximum cgw/Oz, we performed the simulation illustrated by contour plots
of p'/p in Fig. 3. This figure should be compared to the corresponding figure for linear

evolution, Fig. 1. The times represented are the same in each figure. By the time of panel
(b), a clear asymmetry in the form of the packet has developed in the nonlinear case and

there is some clear distortion of the packet in the final panel. Nevertheless, the overall

evolution of this nonlinear packet is not very different from the linear case. This packet
is so weak that the initial condition is not overturning anywhere and the Richardson
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(a) (b)
FIGURE 4. Contours of p/po from a simulation of the nonlinear propagation of a wavepacket
with initially max Ow/Oz _ 0.38N. The domain size is 200 m on each side. The vertical axis is
depth. The two times illustrated correspond to the first and last times of Fig. 1. The contour
increment is such that the vertical separation betwcen unperturbed isopycnals is 8 m.

number is above 1 everywhere. Thus, the classical criteria for convective instability and

shear instability are not satisfied in this packet. This continues to be the case throughout

the simulation in spite of small-scale generation by nonlinear wave-wave interactions. An

idea of how weak this packet is can be obtained graphically from the plots of the density

contours as illustrated in Fig. 4.
The next case that we will treat is one for which the amplitude of the packet is

just above the threshold for overturning. The amplitude of this packet in terms of its
maximum strain rate is Ow/Oz = 0.76N. In Fig. 5, we display the contour plots for the

perturbation density at the same times as in the previous figures. We see that there is
some early production of small scales that are evident in the wake of tile packet. By
time 120 N -1, the packet itself has become badly distorted, and by time 210 N -1, it

has degenerated into small-scale structures, although these still retain to some extent

an organization and alignment related to the original structure of the packet. To better
illustrate the decay of this packet, we display contour plots of the full density field from

t = 47N -1 to t = 90N -1 in Fig. 6. Each frame is an enlarged image centered on the

wave packet, showing only a portion of the domain (a square of size 200/3 m on a side).

In panel (a) we see an early stage in which the wave is overturning at points, but there

has not yet been any strong production of energy in scales smaller than 2 m (note that

the spacing between the unperturbed isopycnals is 2 m). There are four relatively strong

crests evident in panel (a). These crests are adwmcing from bottom-left to top-right in

these figures. The weakest crest (bottom-left) is just entering the packet in panel (a). In
the linear evolution as each crest passes through the packet from bottom-left to top-right,

its amplitude first increases and then decreases. As envisioned by Thorpe (1999), if in

amplifying the crest surpasses some threshold for turbulence production, it will leave



126 G. F. Carnevale C4 P. Orlandi

(c)

(a)

.° "o.

(b)
%.,.

q,

l*

o. (d) "_ _ _,

Q

• "_,_ _,_

o _V h I

FIGURE 5. Contours of the magnitude of the perturbation density IP'/Pol from a simulation of

the nonlinear propagation of a wavepacket with max Ow/Oz _ 0.76N. The domain size is 200

m on each side. The vertical axis is depth. Tile only contour level drawn is that at 0.5 of the

maximum field value. The time sequence of the panels is the same as in Fig. 1.

a 'scar' of small-scale perturbations that perhaps may link up with the scars produced

by the previous and following crests as they pass through the packet. Thorpe (1999),

gives a criterion for whether such overlapping will take place based on the makeup of the

packet and the duration of the small-scale perturbations. The period of the sequence of

panels shown here is long enough for the weak crest on the lower-left side of the packet

in panel (a) to move completely through the packet, finally becoming the weak crest on

the upper-right side. In fact, as envisioned by Thorpe (1999), this crest does overturn

and produces small-scale perturbations that do form a somewhat continuous scar when

combined with the remnants of the breaking of the previous and trailing (:rests. One
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FIGURE 6. Contours of p/po from a simulation of the nonlinear propagation of a wavepacket with

initially max Ow/Oz _ 0.76N. Only a portion of tile computational frame is shown, and this
corresponds to a square 200/3 rn on each side. The contour increment is such that the vertical

separation between unperturbed isopycnals is 2 m. The times corresponding to the panels are

(a) 47, (b) 54, (c) 66, (d) 73, (e) 83, and (f) 90, all in units of g -1.
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FIGURE 7. Contours of the magnitude of the perturbation density Ip'/pol from a simulation of
the nonlinear propagation of a wavepacket with max Ow/Oz ,_ 1.3N. The domain size is 200

m on each side. The vertical axis is depth. The only contour level drawn is that at 0.5 of the

maximum field value. The time sequence of the panels is a) t=19, b) t=34, c) t=43. and d) 58
in units of N-1

should note, however, that during the period when a particular crest is actually breaking,

the overturning and small-scale production is not uniform along tile length of the (:rest

but rather appears in spots along the crest (see panels (c) and (d)). Also the breaking

and subsequent scar formation does not continue indefinitely. The strength of the packet

is both dispersed and dissipated, so that by t = 210N -1 the process of scar formation
has ceased.

We next examine the ease of a packet that initially is strongly overturning. This packet

does not survive long, but the manner in which it breaks up is of interest. We use
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(a) (b)

FIGURE 8. Density isosurfaces from a three-dimensional simulations of the evolution of a
wavepacket. The view is from above and to the front of the computational domain. The iso-
surface in (a) cuts through the trailing part of the packet, while that in (b) cuts through the

leading part.

an amplitude such that max Ow/Oz = 1.3N. In Fig. 7, we show the contour plots of

the perturbation density from this case. For this simulation, we have shifted the initial

position of the packet away from the corner so that the relevant evolution can be more

clearly observed. In addition to the production of much small-scale energy during the

disintegration of the packet, there is also a significant amount of radiation obvious in

these graphs. As the packet begins to break up, most of the radiation appears to be at

right angles to the original packet propagation direction. This would indicate that the
source of this secondary radiation is primarily oscillating at the same frequency as the

central wavevector of the packet. This follows because the angle of propagation is linked

to the frequency of the source; waves propagating at 4-45 ° from the horizontal must all

have the same frequency. As the breakup continues, however, the range of radiation angles

increases, indicating that the source is no longer dominated by a single frequency. This

could be the result of either strong nonlinear effects or the fact that a transient source

necessarily comprises many frequencies which would stimulate radiation at various angles

even in linear theory.
Finally, we turn to the question of three-dimensional simulations. We performed a

series of simulations with a computational domain representing a cube of the ocean

200 m on a side. Tile computational grid had 128 points in each direction. We used

only Laplacian diffusion for both momentum and density. To initiate three-dimensional

motions, we added small-scale background noise to the initial wavepacket. To make a

comparison with the two-dimensional results, we averaged the density field along the x
direction and prepared plots of p and p'. The basic behavior from the three-dimensional

simulations for large-scale aspects of the flow was very similar to the two-dimensional

results. The resolution for the three-dimensional simulations, however, was not adequate

to reproduce all tile details of the overturning events seen in the two-dimensional flow.
In the two-dimensional cases, with a high number of wavenumbers and a hyperviscosity
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dissipation, we were resolving wavelengths down to 0.8 m. For the 3D flow the best we

could do with the resolution used and the Laplacian dissipation was perhaps 3 m. In
Fig. 8, we display the results from one such run with the initial amplitude set so that

max Ow/Oz = N. Here we show isosurface plots of the full density of the flow. In 8a

we see an isodensity surface that cuts through the tail region of the packet, which ha.s

already produced a substantial amount of small-scale energy. Due to the poor resolution,

however, we cannot discern any realistic looking overturning events. In 8b we see a density
isosurface that cuts through the leading end of the packet at the same instant of time as

that in 8a. These two isosurfaces confirm the picture that we had already seen from the
two-dimensional simulations (cf. Fig. 6).

4. Conclusions

Our two-dimensional simulations with hyperviscosity were sufficiently well resolved

and had a sufficiently large computational domain to capture the basic phenomena of

interest. Thus we were able to see a packet with approximately the correct vertical

structure propagate through a substantial portion of a thermoeline as observed in the
Alford and Pinkel (2000) data. We were able to see overturning events on the scale of

about 2 m, which is entirely consistent with Alford and Pinkel's observational census

of overturns that places their median vertical scale at about this value. Unfortunately,
these simulations could not also simultaneously capture the large horizontal scales of tile

rapidly advected packet suggested by Alford and Pinkel (2000) as a model for one of the

packets in their observations. Our three-dimensional simulation was able to capture only

the large-scale aspects of the packet propagation. We hope in the future to improve on
this by using a smaller computational domain, increasing the resolution of the model and
incorporating an eddy viscosity.
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The combustion group

During the CTR 2000 Summer Program, seven projects related to combustion and

sprays covered a large variety of topics ranging from the flmdamental understanding of

spray development and combustion processes to tile modeling of real applications. As

in previous summer programs, large-eddy simulation (LES) of chemically reacting flows
was a main subject. In contrast to previous years, in 2000 the main focus was not only

on the development and assessment of combustion models, but also on the evaluation

of the merits and feasibility of LES for industrial applications. This trend towards the

sinmlation of practical applications is reflected in the following facts: Three of the seven

projects have industrial participation; two of the projects are related to the modeling

of spray development, a key issue for modeling real combustion devices, which typically

burn liquid fuels; and three projects are related to partially premixed combustion, which
is the main combustion mode in many modern gas turbines and piston engines.

An example of the latter is the work by Jim6nez, Haworth, Poinsot, Cuenot and Blint.

This group extended a project initiated in the 1998 CTR Summer Program where the
first direct simulations of premixed flames propagating into a stratified mixture were

conducted with full treatment of complex chemistry. In 2000, globally lean mixtures
were studied and NOx formation added. In a parallel project, Haworth studied a new

model which combines the capabilities of flamelet and pdf methods. This model has the

capacity of handling stratified combustion and pollutant formation.

Legier, Poinsot, and Veynante performed an LES of combustion instabilities in a dif-
fusion burner built at Ecole Centrale Paris for SNECMA. The main issue was to test

whether LES could predict the different stabilization processes of this flame.

In an attempt to develop an efficient and robust premixed combustion model for LES of

engineering applications, Flohr and Pitsch developed an LES formulation of a turbulent

flame speed closure model which was originally proposed for RANS modeling. The model

was implemented in a commercial flow solver with LES capability and applied to a generic

premixed burner with focus on the combustor response to forced inflow modulations. An

important part of this work is the evaluation of the LES capability of the flow solver

by comparing DNS results for a turbulent pipe with those obtained using an existing,

extensively validated CTR DNS code.

Although reactive flow problems in chemical engineering typically reveal a chemistry

considerably different from hydrocarbon chemistry of fossil fuels observed in engine com-

bustion, similar combustion models might be applicable in both cases. During this pro-

gram, the methyl chloride chlorination process was investigated by Harvey and Pitsch.
In order to evaluate tim level of modeling complexity required in typical industrial appli-

cations, flamelet models were implemented in a RANS and an LES code, and predictions
for a model reactor using both codes were compared to simulations neglecting chemical

closure. Some important findings are that the temperature is substantially overpredicted

if cheinical closure is neglected. The LES also exhibited considerably lower scalar dissi-

pation rates and higher maximum temperatures compared to the RANS calculations.
An issue of particular importance to numerical simulations of combustion in technical

devices is the modeling of spray dynamics and vaporization. In most gas-turbine combus-

tots and in modern diesel engines, liquid fuels are injected at subcritical temperatures

into a supercritical environment. Common spray models fail to predict the transitional

behavior which is important in this regime. Oefelein and Aggarwal addressed this problem
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bydevelopinga unifiedhigh-pressureevaporationmodelwhichincludesthedescription
of transcriticalandsupercriticalprocesses.ThesecondsprayrelatedprojectbySmith,
Cha,Pitsch,andOefeleinperformedDNSofevaporatingandreactingspraysin isotropic
turbulence.Usingtheanalysisoftheresultingstatisticsfor themixturefractionandthe
scalardissipationrate,theyprovidedanovelformulationofmixturefractionbasedcom-
bustionmodels,suchasconditionalmomentclosureor unsteadyflameletmodels,which
canbeappliedto spraycombustion.

HeinzPitschandThierryPoinsot
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Numerical simulations of combustion in a lean

stratified propane-air mixture

By C. Jim_nez_, D. Haworth_, T. Poinsot_¶, B. Cuenot_ AND R. Blintl[

Direct numerical simulation (DNS) of combustion in globally lean non-homogeneous

propane-air mixtures has been performed for several initial distributions of non-homogene-
ities. Results have shown a strong influence of the scale and asymmetry of this distribu-

tion on both the combustion efficiency and thermal NO production, in accordance with

experimental results. The simulations also have made possible a quantitative assessment
of flamelet modeling for the primary flame, which yielded remarkably good results.

1. Introduction

In direct-injection engines, liquid fuel is injected directly into the combustion chamber

to generate a highly stratified fuel/air mixture at ignition time. This has the potential to

significantly improve the engine performance, especially at low-speed light-load operation

(Takagi, 1998), and is the subject of intense research for both spark-ignition gasoline

(Zhao et al., 1999) and compression-ignition Diesel (Krieger et al., 1997) engines.
This flame propagating into a non-homogeneous mixture is a first example of partially

premixed combustion, in which the reactants are not completely mixed nor completely

separated before combustion and for which modeling can not be based on the traditional

premixed/non-premixed combustion scenarios. A second example can be found in aircraft

engines, in which fuel and secondary air are injected at various locations, resulting in a
nonuniform equivalence ratio at the flame front (L_gier et al., 2000).

Research in the field of partially premixed combustion has shown contradictory results

concerning the propagating speed and efficiency of a flame in non-homogeneous premixed

conditions as compared to the equivalent (in the sense of containing the same amount

of fuel and air) uniformly premixed case. The experimental results of Zhou et al., 1998

suggest an enhanced heat release related to the presence of non-homogeneous pockets of

rich/lean mixture for a wide range of variation of the parameters of the experiment. On
the other hand, theoretical (Peters, 2000) and numerical (HSlie & Trouvfi, 1998) results

predict exactly the opposite behavior.
One of the motivations of the present project was to try to resolve such contradictions.

Results of previous work (Poinsot et al., 1996, Haworth et al., 2000a, Haworth et al.,

2000b) had suggested that both the distribution of inhomogeneities in the equivalence

ratio space and its spatial length scales would play a major role in increasing/decreasing

global heat release, which can in part explain the discrepancies above.
A second objective was to contribute to the modeling of partially premixed combustion.

t CERFACS
Pennsylvania State University

¶ IMFT
ILGM
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Previous studies have shown that in partially premixed systems, combustion occurs in
two stages:

• A primary flame is first established that consumes all primary fuel and produces

most of the heat release. It is expected that it can be described using a progress variable
and laminar fiamelet concepts.

• A secondary reaction zone appears behind when fuel fragments from the rich zones,
oxidizer from the lean zones, and combustion products mix. There is still controversy on

whether it can be seen as a diffusion flame and described by diffusion flamelets or should
be described as distributed combustion.

Moreover, the issue of pollutant formation had to be addressed, as higher peak tem-

peratures can increase the pollutant emission level of a stratified lean-charge engine as

compared to a homogeneous lean-charge engine (Takagi, 1998). Formation of pollutants
such as NO in premixed systems is most commonly computed by adopting equilibrium
and steady-state hypotheses that permit postprocessing of production rate as a function

of local N2 and 02 concentration and temperature (Glassrnan, 1987). An assessment of

the validity of this approach in the present partially premixed case was needed, and for

that reason a full thermal NO mechanism was included in this study.

The approach adopted is to perform DNS of a premixed flame propagating into non-
homogeneous propane-air mixtures at conditions that approximate the gasoline direct

injection (GDI) engine operating conditions in part-load, low-speed operation (Haworth

et al., 2000a). A detailed reaction mechanism based in 30 species and 76 reactions (in-
cluding thermal NO chemistry), multicomponent molecular transport of species, and full

resolution of both the turbulent and the chemical scales permits reliable simulations

from which information relative to characterization and modeling of these systems can
be extracted.

2. Numerical simulation

DNS of a compressible multi-component gas mixture evolving under turbulent velocity

conditions is used to perform this study. The conservation equations for mass, momentun_,
chemical species mass fractions, and energy are solved using the NTMIX-CHEMKIN

code (Baum et al., 1994). High-order space and time integration of the equations is

performed by sixth-order compact finite-differences (Lele, 1992) and a third-order Runge-

Kutta temporal scheme. The elementary reaction production terms and multicomponent
molecular transport coefficients are computed using the CHEMKIN and TRANSPORT
packages (Kee et al., 1980, Kee et al., 1983).

DNS is extremely expensive. On one hand, a large number of species mass fractions is

needed if one wants to represent realistically the chemistry and transport; on the other

hand, very fine spatial and temporal grids are needed if the turbulence and chemistry are
to be resolved without modeling in order to capture the smallest scales. This results in a

severe limitation of the size of the systems that can be simulated if computations are to

be performed at affordable costs. The flame width given by the present chemistry is of the
order of 0.15 ram, which imposes a minimum size for the computing domain, but much

larger sizes are needed to attain realistic turbulent length scales. A three-dimensional

simulation of a cubic domain only a few millimeters on each side with the present chem-

istry would demand CPU times of the order of years. A two-dimensional simulation of the

present chemistry in a planar domain a few millimeters on each side requires CPU times
on the order of 2-3 days on a NEC SX-5 computer. Of course some turbulent features
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are lost in the two-dimensional approximation, and the present computations would be

badly suited to the quantitative characterization of the effects of turbulence on mixing

and reaction (not only because of the two-dimensionality but also because of the low

Reynolds number). But it is a reasonable choice in the present study where turbulence

(2D turbulence) is only used as a means of deforming the flame front and no quantitative
correlations between turbulence and the flame are sought.

3. Description of the configuration

The selection of the configuration for the present work was guided by previous results

(Haworth et al., 2000a) which had shown no great influence of non-homogeneities on the
overall heat release, in contradiction with experiments. Analysis of the phenomena that

can affect the overall heat release suggests that four main effects are in competition in

non-homogeneous premixed systems:
• First, differences in local reaction rate due to local variations in the equivalence

ratio produce a deformation of the flame as segments of flame initially propagating at
a uniform speed begin to propagate at different speeds. This effect will in all cases

produce an increase in the flame surface (or length in 2D) as compared to that of a

flame propagating into homogeneous reactants. The magnitude of the increase should

depend on the spatial distribution and range of inhomogeneities as well as on laminar

flame propagation properties.
• Second, differences in local reaction rate give rise to local variations in heat release

per unit flame area. This can contribute to either an increase or a decrease in global heat
release as compared to the homogeneous case, depending mainly on the distribution of

non-homogeneities in equivalence ratio space and flame propagation properties.

• Third, turbulent straining effects usually decrease locally the reaction rate as the
flame surface tends to be aligned with tangential strain, whose effect is to reduce locally

the reaction rates. This may affect the homogeneous and the non-homogeneous flames

differently as the flame-front shape in the former is totally determined by turbulence,

while non-homogeneities can change the flame shape as described above.

• Lastly, locally higher/lower temperatures occur in a non-homogeneous flame as com-

pared to a homogeneous one. Diffusion, conduction, and turbulent mixing would then
tend to decrease or increase the mean temperature at the flame front, resulting in lower//

higher reaction rates as compared to the values based on the local stoichiometry and
strain rate. For example, a locally higher temperature than that of the unburned reac-

tants could result in burning at local equivalence ratios beyond the flammability limits.

In Haworth et al., 2000a, results for a stoichiometric initially laminar flame propagat-

ing into a non-homogeneous turbulent mixture were compared to those of a homogeneous
mixture having the same amount of fuel/air, that is, conserved mean stoichiometry. Lo-

cally fuel-lean or fuel-rich regions correspond in this case to lower reaction rates (laminar
flame speed peaks at a slightly fuel-rich equivalence ratio; Fig. 1). The resulting reduc-
tion in mean heat release per unit flame length approximately compensated for the flame

surface increase, yielding essentially the same overall heat release for non-homogeneous

and homogeneous flames. Maximum differences were approximately of 10%. Later work

(Haworth et al., 2000b) showed that variations in the spatial scales of inhomogeneities
have a strong effect due to the change of scale of the flame-front deformations. For ex-

ample, very small rich/lean pockets are not able to produce an appreciable deformation

in the flame front, and thus the net effect is a reduction in heat release.
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FIGURE 1. Normalized reaction rate of a premixed propane-air laminar flame as a function of

equivalence ratio ¢.
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TABLE 1. Description of equivalence ratio
distributions in the simulations.
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TABLE 2. Description of parameters of
simulations.

A different configuration was selected for the present study. Here an initially laminar

lean flame was established and propagated into a non-homogeneous turbulent mixture

having the same global lean stoichiometry. This corresponds more closely to conditions in

a stratified-charge direct injection engine at part-load, low-speed operation. In a globally

lean mixture, where the distribution of local reaction rates is symmetric about tile mean

the mean reaction rate per unit flame length would be similar in homogeneous and non-

homogeneous cases (see Fig. 1). This combined with an increase in flame length would

result in the global heat release being higher in the non-homogeneous case. Here different

distributions about the mean were explored to establish the effects in efficiency of com-

bustion and NO formation. In a first simulation (B1 in table 1), mixture inhomogeneities

were symmetrically distributed around the mean and thus limited to A¢ = ±.6. Re-

sults showed a small gain in heat release as compared to homogeneous combustion (see

Fig. 2), as only a small portion of the mixture was close to stoichiometric or rich. A

second configuration (C1) was designed in which inhomogeneities were introduced in an

asymmetrical way with a thinner but higher peak towards the rich side. This is expected

to correspond more closely to conditions in an engine, where fuel is injected as a liquid.

Case C1 presented a clear gain in efficiency (see Fig. 2) mainly due to a higher mean

heat release per unit flame length, as total flame length was essentially the same as for

the previous configuration (Fig. 2).
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FIGURE 2. Global heat release (left) and flame length (right) of a lean (_ = .6) flame propagating
into a homogeneous lean mixture (-*-), a non-homogeneous mixture symmetrically distributed
around _b= .6 (-o-), and a non-homogeneous mixture biased to the rich side (- -o - -). Values
are normalized by those corresponding to a planar laminar flame with ¢ = .6.

The simulations were initialized with reactants on one side of the computing domain

and products on the other side, separated by a lean (¢ -- .6) planar laminar premixed
flame. Two-dimensional turbulence was imposed as an initial condition using an energy

spectrum parametrized by the initial rms turbulent velocity u_0 and the initial turbulence

integral length scale ITO or characteristic time TT0 (Haworth N: Poinsot, 1992). Other

parameters are the initial turbulent Reynolds number ReTo, the initial laminar flame

propagation speed s_, the initial laminar flame thickness _o and the flame time r I, defined
in Haworth et al., 2000a as: Tf = 2_°/(s°(1 + pu/Pb)). The values of these parameters for

the present simulations are reported in table 2. The different simulations performed differ

only in the length scales A0 and ranges of equivalence ratio imposed as initial conditions

(table 1).
The chemical mechanism adopted was a 28-species 73-reaction propane mechanism

proposed in Haworth et al., 2000a to which two additional species (N and NO) and
three reactions were added for thermal NO (extended Zeldovich mechanism). Chemistry

parameters for the NO mechanism were taken from Hanson and Salimian, 1984.

4. Primary flame characterization

The computed fuel mass fraction and heat release fields corresponding to times t/T I = 2

and t/r I = 4 obtained in three simulations (A, C1, and C2) are shown in Fig. 3. Also
shown are the stoichiometric contour line of the mixture fraction field zc+g and contours

of the progress variable c, defined as (Haworth et al., 2000a):

Nspecies

= + = 1-
n=l

Case A corresponds to a homogeneous reactant mixture with equivalence ratio ¢ = .6,

case C1 to a non-homogeneous reactant mixture in which the initial length scale of

inhomogeneities is A¢ = 1, and case C2 to a non-homogeneous mixture with A¢=4. The
same initial turbulence was imposed in the three cases. At time t/T! = 2 the flame

front displays the same shape in all three cases, while differences are apparent by time

t/T! = 4. Locally different propagation speeds due to inhomogeneities have deformed the
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FIGURE 3. Heat release (marked by white lines representing progress variable isocontours) and

fuel mass fraction (marked by black line representing the stoichiometric isocontour) fields. Re-

sults correspond to times t/r/ = 2 (left) and t/r I = 4 (right) and to r A (top), C1 (middle),
and C2 (bottom) simulations. Scale goes from white at zero values to light grey for fuel mass
fraction and to black for heat release.
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flame front in C1 at the later time, resulting in a longer flame compared to flame A. The

flame front is only slightly deformed in simulation C2 as a result of the smaller size of

the rich/lean pockets.
Time evolution of the flame length, computed as the length of a progress variable

iso-contour (c = 0.9), is plotted in Fig. 4. Time is normalized in this figure by the

flame time _-I, and flame length is normalized by the length of the initial laminar planar

lean (¢ = .6) flame. All three flames present a similar initial increase in length up to

time t/r I = 1.25, where they all reach twice their initial length. This similar evolution

suggests that turbulent wrinkling dominates at this stage. Later, small differences in

length appear, with the non-homogeneous flames growing faster than the homogeneous
onc. These are the first signs of the effect of non-homogeneities and are too small to

be visible in Fig. 3. Flame length then decreases in all three cases, probably as the

pocket visible in Fig. 3 at time 2 is consumed. At late times flame C1 clearly separates
from the other two, presenting a net increase in flame length corresponding to a rapidly

propagating close-to-stoichiometric/rich flame segment that can be identified in Fig. 3

in the upper third of C1. Flames A and C2 continue to have similar lengths as expected

from the lack of deformation of flame C2.

Figure 5 displays the evolution of global heat release for the same simulations. Heat

release is computed by integrating the local heat release over the computational domain

and normalizing by the heat release of the initial planar laminar lean (¢ = .6) flame. Its
rate of increase is smaller than that of flame length; by time 1.25 it has reached only

1.25 times its initial value in all cases. Differences in global heat release increase become

significant after this time, with flame C1 increasing much more rapidly than the other

two. Since flame length is identical for all three flames up to times > 3, this different
behavior must be due to locally greater heat release per unit flame length in C1.

Mean heat release per unit flame length is plotted in Fig. 6. At early times the same

decreasing tendency is seen for all three flames, which must be associated with turbulent

straining effects. The effects of higher local equivalence ratio in the C1 case begin to
dominate after some time. This delay is due to the initial conditions: there is a separation

between the initial flame front and the region where non-homogeneities are introduced

to avoid numerical problems. The flame must propagate across this separation to reach

the rich/lean pockets. In case C2 the mean heat release follows the same trend as in the

homogeneous case. While cases C2 and C1 initially have the same mean and fluctuation
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in the equivalence ratio distribution, the smaller length scales of case C2 make turbulent

mixing more effective in bringing the mixture towards homogeneity; by the time the
flame front reaches the non-homogeneous region, the equivalence ratio fluctuations have
been damped.

A somewhat surprising effect is observed at the latest times, where the mean treat

release for simulation C2 is even smaller than that of the homogeneous case. This can be

explained by local extinction effects in extreme lean zones (see Fig. 3), which are much

more important in C2 than in C1. Although the global initial distribution of rich/lean
zones is the same for flames C1 and C2 and they eventually evolve towards the same

final distribution, the evolution of the distribution on the flame front is quite different.

In Fig. 7 the time evolutions of the maximum and minimum values of zc+H at the
flame front (given by the c = 0.9 isocontour) are plotted for the three simulations. The
distribution is clearly shifted to lean values for all three cases, but in C1 it is shifted

later to rich values. The effect of shifting towards leaner values is to reduce the mean

heat release per unit length, and this could be the explanation for the more important
decrease in mean heat release seen in case C2.

This shifting effect was already observed in Poinsot et aL, 1996. There it was attributed

to a longer residence time, thus a larger probability of occurrence of lean pockets as

compared to rich ones due to smaller flame speeds. In the present simulation, this effect
is larger for the C2 case as it is probably enhanced by the asymmetrical small-scale initial

distribution of inhomogeneities there with richer pockets smaller than lean pockets, thus

mixing more rapidly. In case C1, where scales of inhomogeneity are larger, mixing effects

are less important and the shift towards leaner values can intermittently be compensated
by rich pockets arriving at the flame front (Fig. 7).

5. Post flame characterization

The secondary reaction zone is usually defined by means of the progress variable c as

the zone in which primary fuel has totally disappeared (c > .9999 or even c = 1). As in

previous studies, it was found that only a very small portion of the global heat release

occurs in this post-primary flame zone. The most important secondary reaction zone in

the present simulations, corresponding to case C1, can be seen in Fig. 3 behind the; richer
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flame segment and close to the stoichiometric line, and represents a very small percentage
of the totM heat release. In simple chemistry, the fact that the flame is located near the

stoichiometric line would directly suggest a diffusion flame, but in complex chemistry this

is much more difficult to establish. The secondary flame reactants are not the original

reactants, but are species derived from them. The stoichiometric line represents the line
at which the C+H and O concentration are in the same proportions as if there were 5

moles of 02 and 1 of C3Hs, so that in the global reaction C3Hs + 502 = 3CO2 + 4H20

they would be totally consumed to produce 3 moles of CO2 and 4 of H20.

But there is no propane in the secondary reaction zone, and the reactions that do

occur there do not have the same stoichiometry as the global reaction. Reaction close to

global stoichiometry occurs between products of the rich zone (that is, products derived
from propane cracking) and products of the lean zone (mainly O and O2), but does not

imply that they are mixed or unmixed.

In Fig. 8 we have tried to illustrate the post flame structure by plotting the mass

fractions and production rates of some representative species. All figures correspond to

simulation C1 and time t/T I = 4, and production rates are plotted so that negative

rates are always white and positive rates black. The grey background represents zero

net production rate, and the scale has been chosen to allow a better visualization of

the secondary flame (it is not linear). The scale for mass fraction is linear with white

representing minimum values and black maximum values. The stoichiometric line shows
the separation between rich zones in which excess H2 and CO are found and lean zones
in which excess 02 is found. In examining secondary reaction production rates, it can be

seen that O_ is consumed at the stoichiometric line, suggesting a diffusion flame structure.

But for other species reaction is occurring also in other zones: H2 is consumed right on
the stoichiometric line but is then produced in the region delimited by this line, that is, in

the rich zone; CO is also consumed in the rich zone. Then H2 is probably reacting with O2

in a non-premixed mode, but there are other reactions in which H2 and CO are involved

(as well as other species not shown), occurring in a premixed mode. No clear description
in terms of a classical diffusion flame can be depicted for this secondary reaction; in fact,

many reactions of different stoichiometries are occurring in the post flame region, and

probably some occur in a premixed mode and others in a non-premixed mode.

6. NO formation

NO formation occurs at higher temperatures than those of the primary flame and thus

mainly in the post-flame region. Production of NO is enhanced in the non-homogeneous
lean cases, as compared to the homogeneous lean case, as higher temperatures and con-

centrations of O atoms are reached. Figure 9 displays the time evolution of the total

mass of NO for simulations A (homogeneous), C1 (non-homogeneous large-scale), and

C2 (non-homogeneous small-scale). NO mass is higher in both non-homogeneous cases

compared to the homogeneous one, but significant differences exist as well between the
two non-homogeneous simulations. While NO mass in case C1 reaches a value 40% higher

than in the homogeneous case, in case C2 it is only 5% higher. Higher heat release rates

are giving much higher local temperature values in the C1 case compared to C2, which

together with higher O concentrations explains this enhanced production effect.
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CO (right) corresponding to C1 at tit I ----4. For reaction rates white represents negative values
and black positive values, background grey corresponds to zero net production, and the scale is
adapted to emphasize secondary reactions. For mass fractions white represents minimum and
black maximum values, and the scale is linear.

7. A test for the flamelet assumption

A simple new test concerning the modeling of the primary flame has been performed in

this work by directly comparing the heat release obtained in the DNS with that predicted

by a flamelet model. It is usually accepted that a variable equivalence ratio premixed

flamelet assumption is well suited for partially premixed combustion, but quantitative

testing of this assumption was not feasible with previous DNS results as no significant dif-

ferences between heat release in non-homogeneous and homogeneous flames were found.

A simplified formulation of this modeling assumption has been adopted here: The

turbulent flame is assumed to be locally equivalent to an unstrained premixed laminar
flamelet with the same ZC+H. By using a library for the heat release associated with

a premixed laminar flamelet as a function of mixture fraction h(zc+H), modeled heat

release was computed as the integral of h(zc+H) along a progress variable isocontour
C= C*:

H = [ h(zc+H)dEc=c,.
ac--- C*

Results of this computation are compared in Fig. 10 to the results of DNS for the

homogeneous (A) and the non-homogeneous (C1) cases. The model appears to predict

the global heat release remarkably well. Differences at initial times probably are due

to the dismissal of strain-rate effects. In Fig. 6 it has been shown that at early times
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effects of turbulent strain rate are very important in reducing the mean heat release per

unit flame area. Using an unstrained flamelet to compute heat release gives a too-high

estimation for the local heat release and results in a high global heat release. Later,

the model appears to correctly predict the heat release in both cases, but at the latest
times there is an appreciable departure in the non-homogeneous case, with the model

predicting a heat release about 60% smaller than that given by simulations.

This could be an effect of temperature mixing: at late times in the non-homogeneous

case, temperature may have diffused from locally stoichiometric high-temperature zones

to locally leaner or richer zones. The higher temperature may make some flame segments
burn fast compared to the equivalent laminar flame. On examination of the picture

corresponding to late times in the C1 simulation in Fig. 3, one finds that the high heat
release zone corresponding to the stoichiometric reactants is, in fact, extended far beyond
the stoichiometric line to reach leaner and richer flame zones. This is an effect that a

flamelet model based only on the local equivalence ratio will not be able to predict.

8. Conclusions

Simulations of combustion in a stratified premixed propane-air mixture have been

performed under global lean conditions, approaching those of a gasoline direct injection

(GDI) engine. Detailed transport, thermodynamics, and chemistry, including thermal NO

production, were included, which suggests high reliability of results. However, the low

Reynolds number and the two-dimensionatity of the turbulence demand some precau-

tion in generalizing directly to practical combustion systems. Substantial differences in
the amount of heat release between homogeneous and non-homogeneous reactants have

been obtained. This has permitted a detailed study of the different phenomena affecting

combustion efficiency in partially premixed systems• In particular, a strong influence of

the spatial distribution of the nonhomogeneities on heat release and NO formation was
found. Moreover, a quantitative assessment of flamelet models for the primary flame has

been made, yielding excellent agreement. A qualitative study of the secondary reaction

zone has shown the difficulties that a flamelet interpretation would present.
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A probability density function/flamelet method
for partially premixed turbulent combustion

By D. C. Hawortht

A methodology is formulated to accommodate detailed chemical kinetics, realistic turbu-

lence/chemistry interaction, and partially premixed reactants in three-dimensional time-
dependent device-scale computations. Specifically, probability density function (PDF)
methods are combined with premixed laminar flamelet models to simulate combus-

tion in stratified-charge spark-ignition reciprocating-piston IC engines. A hybrid La-

grangian/Eulerian solution strategy is implemented in an unstructured deforming-mesh

engineering CFD code. Modeling issues are discussed in the context of a canonical prob-
lem: one-dimensional constant-volume premixed turbulent flame propagation. Three-

dimensional time-dependent demonstration calculations are presented for a simple pancake-

chamber engine.

1. Introduction

In most practical combustion devices, the conversion of chemical energy to sensible

energy takes place in a turbulent flow environment. A variety of turbulent combustion
models have been implemented in computational fluid dynamics (CFD) codes to facili-

tate device-scale analysis and design. In general, a different modeling approach has been

required to deal with each combustion regime (e.g., premixed versus nonpremixed). Next-

generation low-emission/low-fuel-consumption combustion systems are characterized by

multiple combustion regimes, i.e., "mixed-mode" or "partially premixed" turbulent com-
bustion. Examples include lean premixed combustion systems for reducing NOx emissions

from gas-turbine eombustors and gasoline direct-injection spark-ignition engines-for re-

ducing the fuel consumption of personal transportation vehicles (Zhao, Lai & Harrington

1999).
Next-generation turbulent combustion models for device-scale CFD also must include

detailed chemical kinetics and must be suitable for three-dimensional time-dependent

calculations (e.g., large-eddy simulation - LES) in complex geometric configurations.
More chemistry is required to deal with kinetically controlled phenomena (e.g., low-

temperature autoignition) to predict trace pollutant species (e.g., NOx, unburned hy-
drocarbons, particulate matter) and to address fuel-composition issues (e.g., alternative

fuels and fuel additives). Increasingly, the phenomena of interest are inherently three-

dimensional and time-dependent. For example, it is unlikely that statistically stationary

computations will suffice to address combustion instabilities in gas-turbine combustors.
And the ensemble-averaged formulation that has been dominant in piston-engine mod-

eling (e.g., Khalighi et al. 1995) cannot capture cycle-to-cycle flow and combustion vari-

ability.
Thus an outstanding modeling/methodology issue in turbulent combustion can be

t The Pennsylvania State University
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stated as: how can increasingly complex chemical kinetics, realistic turbulence/chemistry
interaction, and multiple combustion regimes be accommodated in three-dimensional

time-dependent device-scale CFD? It is the purpose of this report to formulate, imple-

ment, and provide an initial demonstration of an approach that addresses this question.

The model is a hybrid of two of the most promising approaches for turbulent reacting
flows: probability density function (PDF) methods and laminar flamelet models. PDF

methods have the important advantage that the mean chemical source term appears

in closed form; molecular transport ("mixing") remains to be modeled (Pope 1985).
While advantages of PDF methods have been amply demonstrated in laboratory con-

figurations, device-scale application has been slowed by the unconventional Lagrangian

particle-based algorithms that are used to solve PDF transport equations numerically.
Flamelet models, on the other hand, maintain strong coupling between chemical reaction

and molecular transport (Peters 2000). However, the coupling is correct only under spe-
cific (essentially boundary-layer-like) conditions, which are not always valid in practical

combustion devices. In cases where flamelet combustion does occur (e.g., homogeneous

flame propagation in a stoichiometric premixed spark-ignition engine), flamelet mod-

els have proven highly successful. It is relatively straightforward to implement flamelet
models in standard Eulerian grid-based CFD codes.

Following earlier work on PDF methods for complex geometric configurations, a hy-

brid Lagrangian/Eulerian strategy is adopted. Several implementation issues including

mean estimation, particle tracking through unstructured deforming meshes, and particle

number density control have been addressed by Subramaniam & Haworth (2000). There
a composition PDF method and Reynolds-averaged (RANS) formulation were used to

model turbulent mixing with large density variation in an engine-like configuration. Other

key issues in Lagrangian/Eulerian PDF methods have been addressed by Muradoglu et
al. (1999).

The present report expands on Subramaniam & Haworth (2000) in several respects.
First, heat release is included. Second, a hybrid PDF/flamelet method is formulated to

take advantage of the strengths of each these two modeling approaches. Third, both

velocity-composition PDF and composition PDF methods are explored. Fourth, physical

and numerical issues are discussed in the context of a canonical problem (turbulent

premixed flame propagation in a one-dimensional constant-volume chamber). And finally,
preliminary three-dimensional time-dependent RANS computations are presented for a
simple piston-engine configuration.

2. Formulation

The approach is developed in the context of a stratified-charge gasoline-direct-injection

spark-ignition piston engine. A three-stage combustion process is postulated (Fig. 1). By

design, a healthy propagating premixed flame is established initially via spark discharge
at a location where the composition is close to stoichiometric. Soon (within a few mil-

limeters, depending on engine operating conditions), the flame encounters fuel-rich and

fuel-lean mixtures. Behind the flame in locally fuel-rich zones are combustion products

and fuel fragments (mainly the stable intermediates CO and H2, to be precise); behind

the flame in locally fuel-lean zones are combustion products and oxygen. Eventually
the post-flame fuel fragments and oxygen combine to complete the heat-release process.

Stage I aerothermochemical processes (in front of the primary flame) include turbulent

mixing and low-temperature chemistry (e.g., autoignition, under suitable operating con-
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ditions). Stage II comprises flame propagation and the primary heat release. And Stage

III (behind the primary flame) includes turbulent mixing, secondary heat release, and
the finite-rate chemistry that characterizes key pollutant-formation processes such as CO

burnout, NO. formation, and soot formation/oxidation.

Finite-rate chemistry and turbulence/chemistry interaction in Stages I and III are

naturally described using a PDF formulation, while the flame propagation of Stage II is
amenable to laminar flamelet modeling. The essence of the approach is to combine these

two models in a consistent manner that deals naturally with all three regimes.

2.1. Governing equations

Reynolds-averaged equations are used in density-weighted (Favre-averaged) form. Thus
the PDF's considered formally are mass-density functions (Pope 1985). A multicompo-

nent reacting ideal-gas mixture comprising Ns chemical species is considered. At low

Mach number, the mixture mass density p and chemical production rates S_ are functions

of species mass fractions Y, enthalpy h, and a reference pressure Po that is, at most, a

function of time: p = p(Y_, h, p0(t)), 5: = _S(Y__,h, po(t)). Key Eulerian equations express
conservation of mixture mass, momentum, enthalpy, and species mass. A conventional

two-equation k - e turbulence model with wall functions is invoked (e.g., Khalighi et al.

1995). The mean momentum and enthalpy equations have the form:

O[(p)_i] + O[(p)_j_,] _ O(p) + a((rjd + _-Tjd , (2.1)
Ot Oxj Oxi Oxj

(2.2)
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N_ (Ah°f_+fTo Cp_(T')dT'),Here 7Adenotes velocity, p pressure, and h enthalpy: h = Y'_=I Ya , ,

Ah°_f,,_ being tile species-a formation enthalpy at reference temperature T °. The vis-

cous stress is rai = p(Oua/Ox i + Oui/Oxj) - apOul/Oxlaji. A tilde - denotes a Favre-

averaged mean quantity, while angled brackets ( ) are used for the conventional mean;
a double-prime denotes a fluctuation about the Favre mean. Mixture molecular trans-

port coefficients are the viscosity/, and thermal conductivity A; Cp is the mixture spe-

cific heat (at constant pressure). The effective turbulent stress is rr,ji = --(p)uTj_'i ' =

pr(Og, jlcgx, + Oai/cgxj) - _l_rOg, jOxzaji - "_(p)kaji where /_T = C,(p)k21g is the ef-

Dctive turbulence viscosity and Cl, is a standard k - g. model constant. The turbulent
Prandtl number is ay, h.

A modeled PDF transport equation governs the mixture's thermochemical state. This

equation is solved using a Lagrangian method for a large number Np of notional particles.

In the case of a composition PDF, the position and composition of the i th particle
(i = 1,...,Np) evolve by,

x(0(t + At) = x(0(t) + _(x(i)(t),t)At + A -(i)
_ _ m__turb

(I)(0 (t + At) = (I)(i)(t) + S_(O(_(O(t),po(t))At + A_O_ (2.3)

Here _(0 (t) denotes the vector of composition variables required to specify the thermo-

chemical state of the mixture (e.g., mass fractions and enthalpy), Ax (0 is the increment
--turb

in particle position due to turbulent diffusion in time interval At, and A_x is the in-
crement in particle composition due to molecular mixing.

The above equations are supplemented by a thermal equation of state p = p(Y, T, po(t)),

a caloric equation of state T = T(Y_,h, po(t)), fluid property specification (molecu-

lar transport coefficients and specific heats), and a chemical reaction mechanism S =
S(Y, h,po(t)). Additional equations are introduced in Section 2.3.

2.2. Solution algorithm

The CFD code solves the Reynolds- (Favre-) averaged compressible equations for a mul-

ticomponent reacting ideal-gas mixture using a finite-volume method on an unstructured
deforming mesh of (primarily) hexahedral volume elements. Collocated cell-centered vari-

ables are used with a segregated time-implicit pressure-based algorithm similar to SIM-

PLE or PISO. The discretization is first-order in time and up to second-order in space.
Further information can be found in Subramaniam & Haworth (2000).

2.3. Physical models

A hierarchy of models is considered. This staged development is intended to elucidate
key aspects of the approach.

2.3.1. Model 1

Model 1 comprises infinitely fast chemistry, constant specific heats and molecular trans-

port coefficients, and a composition PDF for a single scalar reaction progress variable c

that ranges from zero in unburned reactants to unity in burned products (perfectly pre-
mixed reactants). Heat release is specified via a parameter which corresponds to the nor-

malized temperature rise across an adiabatic flame: _ - -Ah°l/(CpTr_/). Temperature
and density then are simple functions of c: T = h/Cp +c_T_¢/; p = p/RT (R = Cp -C,).
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Turbulent diffusion is modeled as a diffusion process in physical space,

A (O = [VFT,c/(p)]_i,,(t)At + [2AtFTc/(p)]'_(._(0 _ • (2.4)
X__turb , _

Here FT,c = C_,(p)aTlck2/"g is a turbulent diffusivity and 7] is a vector of independent
identically distributed standardized (zero mean, unit variance) Gaussian random vari-

ables.
In a laminar flamelet, chemical reaction and molecular transport are, in principle,

treated exactly: Ac (0 = [S + p- l O(rOc/Oxj)/Oxj]_(,)(O At. That is, both are known from

the given laminar flame profile. At high Damk6hler number, however, direct implemen-
tation is impractical. The length and time scales associated with the flamelet are much

smaller than those associated with the PDF evolution; the latter correspond to the tur-

bulence integral scales. Instead, following Anand & Pope (1987) the fast-chemistry limit

is treated as:

A (4) + Ac(m/  (2.5)c(i)(t + At) = c(i)(t) + aCreaction

Here " (i) takes c(i) to unity as soon as c(i) exceeds Cthresh (a small positive number,
/_Creaction

of the order of the reciprocal of the Damk5hler number); and Ac_ denotes a conven-

tional turbulence mixing model. Here a stochastic pair-exchange model is used (Pope

1985).
Thus for Model 1, Eqs. (2.1) and (2.2) plus modeled equations for k and _ are solved

by a finite-volume method, and the PDF of the reaction progress variable c is computed

using a stochastic particle method (Eqs. 2.3-2.5). Mean velocity and turbulence scales

are passed from the finite-volume side to the particle side; and the mean density (p)

(computed using the mean-estimation algorithm described in Subramaniam _: Haworth

2000) is passed from the particle side to the finite-volume side.

2.3.2. Model 2

Model 2 retains the thermochemistry of Model 1 and replaces the composition PDF

with a velocity-composition PDF. In this case, a finite-volume k equation is not needed;

the turbulent stress in Eq. (2.1) and the turbulence kinetic energy k are computed as,

,,_,, _ .'-'_. ,,_'-_, UaU3)/2 (2.6)= (UlU 1 _}_ U2U2 _]_ I, IIVT,ji = -(p)uju i ,

where u'_u_' is computed from particle velocities. A standard Y equation provides the
necessary turbulence scales.

The PDF transport equation is modeled and solved by considering the positions, com-

positions (progress variable c), and velocities of Np notional particles. Particle progress

variable is governed by Eq. (2.5) while particle positions and velocities evolve according

to,

x__(0(t + At) = x__(i)(t) + u_(0(t)At ,

.. (i) (2.7)u(i)(t + At) = u(i)(t) -- p(i)-lV(p}At + _U__turb

(i) is modeled using a simplified LangevinThe particle turbulent velocity increment _u__turb

equation (Haworth & Pope 1987),

An(k 1 _ • - 1/2 (2.8)= + - + ,

with the model constant Co = 2.1.
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Model 2 is intentionally similar to the model developed by Anand & Pope (1987) for
steady one-dimensional constant-enthalpy freely propagating turbulent premixed flames.

An important difference is in the solution strategy. There a Lagrangian method limited

to the problem considered (steady, one-dimensional, constant-enthalpy, unconfined flame

propagation) was used; here a general-purpose three-dimensional time-dependent hybrid
algorithm is adopted.

In this case Eqs. (2.1), (2.2), and a dissipation equation are solved on the finite-

volume side, while Eqs. (2.5), (2.7), and (2.8) are solved on the particle side. Mean

nlonmntum effectively is computed twice: this redundancy is resolved by forcing particle

mean velocities to remain consistent with the finite-volume mean. Quantities passed from

the finite-volume side are the mean velocity and dissipation rate; the mean density and
Reynolds stresses (Eq. 2.6) are passed from the particle side to the finite-volume side.

2.3.3. Model 3

In Model 3, flame propagation and primary heat release (Stage II, Fig. 1) are governed
by a modeled Eulerian mean-progress-variable equation:

o-v- Oxj --Ox-7[(+- ] i29)
(YT, c _Xj

The chemical source term corresponds to a premixed laminar flamelet model, e.g., E1
Tahry (1990):

(P)gc = p_ _//_-t , (2.10)

where p_ is the local unburned gas density, _ is a laminar-flame characteristic time,

and _ is the probability of being in an active reaction front. In general, a modeled

transport equation is solved for 5 (El Tahry 1990); here _ is specified algebraically and

is proportional to _(1 - c--). Local unburned-gas properties are needed to determine p,,
and 7-t; it is important to recognize that these are not available from F and 5 alone in a

moment fornmlation. In the present formulation, Pu = (pie = 0), tile local mean density
conditioned on being in the unburned gas.

Equations of state and fluid properties remain the same as for Models 1 and 2. The

chemistry is generalized to allow for arbitrary finite-rate chemistry ahead of (Stage I)

and behind (Stage III) the primary flame. A composition PDF for the reaction progress

variable c and an arbitrary set of species mass fractions is considered; the latter are

passive with respect to the thermochemistry. The value of the particle progress variable
is either zero (pre-flame) or one (post-flame); the rate of conversion from c = 0 to c = 1

is governed by the finite-volume-computed mean (Eq. 2.9). A conventional turbulent

mixing model is used (the same pair-exchange model as for Models 1 and 2), but with

conditioning on the value of the particle progress variable: pre-flame and post-flame
particles cannot mix with one another. The chemical source term also is conditioned on

the value of c to allow for different Stage I versus Stage III chemistry:

Y(O(t + At) = Y(')(t) + S (0 (Y__(O(t),c(O(t),po(t))At + AY (i) (2.11)
-- -- -- --mix c i)

Principal finite-volume equations are Eqs. (2.1), (2.2), and (2.9), (2.10) plus equations

for k and _'. Particle positions and compositions evolve by Eqs. (2.3)-(2.5) and (2.11).

Mean velocity, mean progress variable, k and _" are passed from the finite-volume side

to particles; (p), Y, and the unburned-gas properties required for the flamelet model are
passed back.
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2.3.4. Model

Model 4 extends Model 3 to multicomponent reacting ideal-gas mixtures and a library-

based premixed laminar flamelet model. This is the form that is intended for use in

engineering applications (piston engines, in particular). No Model 4 results are presented
in this initial report. A skeletal description is provided to indicate salient model features

and issues.
The flamelet model adopted is that developed in E1 Tahry (1990) and Khalighi et al.

(1995); this includes a modeled equation for _ in addition to Eq. (2.9) for _. A library of
one-dimensional steady unstrained premixed laminar flames with detailed hydrocarbon-

air chemistry is parameterized in terms of pressure, unburned-gas temperature, equiva-

lence ratio (or mixture fraction), and dilution (Blint & Tsai 1998). A particle enthalpy

equation is carried to account for enthalpy (or temperature) fluctuations. Because a mean
enthalpy equation is carried on the finite-volume side, consistency between the two rep-
resentations must be maintained (Muradoglu et al. 1999). Particle species mass fractions

are no longer passive with respect to thermochemistry. A binary particle progress vari-
able is carried as in Model 3. And as in Model 3, the particle progress variable is used

to compute local unburned-gas properties and to switch between Stage I and Stage III

chemistry. "Jump conditions" from the flamelet library are used to increment particle

compositions as c (_) switches from zero to one. For example, flame-front-generated NO

(thermal and prompt) from the flamelet library provides the appropriate initial condition

for post-fiame thermal NO kinetics corresponding to local thermochemical conditions.

3. Results

3.1. 1D premixed flame propagation in a constant-volume chamber

This configuration has been selected for its relevance to the piston engine and as a
natural extension of the freely propagating turbulent premixed flames that have been

studied extensively in the literature. The initial flow is quiescent in the mean. Initial

turbulence parameters are the turbulence kinetic energy k0 and turbulence length scale

Io. The initial rms turbulence velocity, turbulence time scale, and dissipation rate then are

' = (2ko/3) 1/2, To = lo/u_o, and e0 = ko/To = (2/3)1/2k3/2/lo • The turbulencegiven by u o
can be forced so that k does not decay in the unburned gas, and the turbulence time

scale _- can be constrained to remain equal to To at all times, effectively replacing the

dissipation equation. These definitions and constraints facilitate comparison with Anand

& Pope (1987). The computational domain has planes of symmetry at x = 0 and x = L.

The flame is ignited at x = L and propagates towards x = 0. As the flame propagates,

chamber pressure increases; the Mach number is low so that spatial gradients in pressure

remain small.

Computations have been performed for a range of aerothermochemical conditions (P0,

To, fl, k0, 10; forcing versus no forcing of turbulence; constant V = TO versus standard _"

equation), for different physical models (Model 1, Model 2, Model 3), and for variations

in numerical parameters (number of finite-volume cells Nc; number of computational

particles Np). The results presented here correspond to an initial chamber pressure
and temperature of po = 100 kPa and To = 300 K, respectively. The working fluid

is an ideal gas having a molecular weight of 24.945 kg/kmol (Po = 1 kg/m 3 at Po,

To). The computational domain has a length of L = 4010. 2_rbulence is forced and

T = TO = constant. A velocity-composition PDF is used (Model 2) with Nc = 200,

Np/Nc _ 100-200. For comparison, in a stoichiometric homogeneous-charge automotive
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FIGURE 2. Variation of normalized turbulent burning velocity and flame thickness with
heat-release for one-dimensional premixed turbulent flame propagation. Open symbols are
Model 2 results: o ST/ST.13=O; Q (_T/(_T,_3=O, Filled symbols are Anand & Pope (1987) results: •
ST /STj3=O; • (_T /(_Tj3=O.

spark-ignition piston engine at the time of ignition: the clearance height corresponds to 4-

8 turbulence integral scales and the bore diameter to 40-80; the pressure and temperature

are approximately 15-20 atm and 700-900 K; the heat release parameter is between/3 = 5

and/3 = 6 with Tre] = 300 K; and the ratio of unburned- to burned-gas density is between
three and four.

With forced turbulence, flame thickness and propagation speed remain approximately

constant away from the end planes (L/4 < x < 3L/4, say). For/3 = 0, the present results

are essentially the same as the R = 1 results of Anand & Pope (1987). (The density

ratio R used there corresponds to the initial unburned- to burned-gas density ratio for
the confined flame with T,.e/ = To; the density ratio decreases in time for the confined

flame.) The quasi-steady mass burning rate (or turbulent flame speed ST) and turbulent

flame thickness ST, each normalized by their/3 = 0 value, are plotted as functions of/3

in Fig. 2. Here 6T is the width of the _'. (1 - c_ profile. Anand & Pope (1987) results
are shown for comparison, using R = Ro =/3 + 1. Global trends are consistent with the

freely propagating flame results. The mass burn rate initially drops with increasing/3 and

asymptotes to a value that is about 70% of the/3 = 0 value. Flame thickness increases

with increasing/3; the increase is slow initially and becomes approximately linear with/3
for/3 > 1.

The internal structure of the flame at an instant when it has propagated across ap-

proximately one-half of the chamber is shown in Fig. 3 (/3 = 3). The mean velocity is

zero at x = 0 and x = L; there is expansion (O_/Ox > 0) through the flame while the
gases ahead of and behind the flame are compressed (O_/Ox < 0). A consequence of this
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compression is the positive temperature gradient (OT/Ox > 0) behind the flame, which
results from compressional heating terms in the enthalpy equation (Eq. 2.2).

An important difference between the confined flame and a freely propagating flame is

the mean pressure gradient O(p)/Ox. In Fig. 3, p'(x) = (p(x)) - L -1 f:(p(x))dx is the
difference between the local mean pressure and the volume-mean chamber pressure. In

a steady freely propagating flame, the mean momentum equation reduces to an expres-

sion relating the gradient in (p) to gradients in u "2 and g (Eq. 17 of Anand & Pope
1987); this simplification cannot be made for the unsteady confined flame. The pressure
gradient can have a significant influence on flame structure. In particular, O(p)/Ox < 0
results in preferential +x acceleration of lower-density products (c = 1) compared to
higher-density reactants (c = 0). For sufficiently high density ratio and IO(p)/Oxl, there

is countergradient diffusion in the mean: u"c" becomes positive, corresponding to a tur-
bulent flux up the gradient in g. Countergradient diffusion is_evident through much of
the flame thickness at the instant plotted in Fig. 3. However, u"c" varies considerably in

response to changes in the pressure profile as the flame advances.

3.2. A simple reciprocating-piston engine

As an initial demonstration for a three-dimensional time-dependent configuration, Model

3 (a composition PDF) is applied to a simple piston engine. Fluid property specification
is the same as for the one-dimensional flame-propagation example, and _ = 6 at Trel =
300 K. A coarse mesh of 7,695 volume elements represents a pancake (flat head and

piston) combustion chamber having 0.5 L displacement volume (86 mm bore x 86 mm
stroke) and a geometric compression ratio of 10:1. Nominal particle number density is
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FIGURE 4. Mass-burned fraction and global species 3 mass fraction versus crank angle degrees of
rotation for a simple pancake-chamber engine, Model 3: -- computed mass-burned fraction;
--- -- computed 104"Y3,g_ob,,l;o measured mass-burned-fraction curve (typical); .... computed
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25 per cell. Computations are initialized at piston bottom-dead-center; initial pressure

and temperature are 100 kPa and 300 K, respectively. The initial mean velocity field
has a swirl ratio of 2.0 (angular momentum about the cylinder axis, divided by the fluid

moment of inertia about that axis and normalized by the crankshaft rotational speed)
and a tumble ratio of 1.0 (similarly normalized angular momentum about an axis normal

to the cylinder axis). The initial turbulence kinetic energy is two times the mean piston
speed, and the initial turbulence integral length scale is 10 mm. Engine speed is 1200

r/min with ignition at 25 crank-angle degrees before piston top-dead-center. All walls
(head, liner, and piston) are isothermal at 600 K.

Three species are carried in addition to the reaction progress variable c. Species 1

and 2 correspond to two trace contaminants that initially are segregated in the axial

(z) direction: (Y1 = 1, Y2 = 0 for z < (Zpiston + zheaa)/2; Y1 = 0, Y2 = 1 for z >

(zp,sto,, +Zhead)/2). The third species is the product of chemical reaction between species-]

and 2. An irreversible finite-rate Arrhenius reaction of the form 5'3 = AY1Y2exp{-T/Ta }
($1 = $2 = -$3/2) is used with A = 1 s -1 and Ta = 10,000 K. This reaction occurs

only after species 1 and 2 have mixed to the molecular level; moreover, because of the

high activation temperature, the reaction rate becomes significant only after the primary
flame has passed. Species 3 represents a generic trace pollutant.

Computed mass-burned fraction through the combustion event is plotted in Fig. 4.

Burn duration corresponds to 50-60 crank-angle degrees of rotation, and the computed
location of peak pressure is 12.5 ° after top-dead-center: there are reasonable values. A

typical measured mass-burned fraction curve for an open-chamber engine under similar
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operating conditions is shown for reference. Experimental curves typically asymptote
to less than 100% total mass burned because of blowby past piston rings and other

effects not present in the model. This figure shows that the global rate of heat release

(governed by Eulerian flamelet equations, with local unburned-gas properties taken from

the particles) is captured reasonably well. The final curve on Fig. 4 shows the computed

global mass fraction of pollutant species 3.

4. Concluding remarks

Hybrid PDF/premixed laminar flamelet models and a hybrid Lagrangian/ Eulerian

solution methodology have been formulated, implemented, and demonstrated. These pro-
vide a framework for incorporating detailed chemical kinetics, realistic turbulence/chemistry

interaction, and mixed-mode combustion (Fig. 1) in three-dimensional time-dependent

CFD for device-scale applications. The philosophy has been to use the model that most

naturally represents the physics at each stage of the combustion process. The principal

issue is integration of the different models in a consistent and natural way. While the

development has been carried out with spark-ignition piston engines in mind, model for-
mulation and numerical methodology, and to a lesser extent the specific physical models

adopted, are intended to be broadly applicable to other mixed-mode combustion systems.
Moreover, the approach is readily extended to subgrid-scale combustion modeling for LES

using a filtered-density-function method (e.g., Colucci et al. 1998); the key difference is

in the specification of appropriate turbulence scales.
Subsequent reports will expand on the preliminary findings reported here. This will

include: a deeper discussion of confined propagating turbulent premixed flames and dif-

ferences with respect to freely propagating flames; presentation of parametric numerical

studies; and further results for stratified combustion in piston engines.
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Dynamically thickened flame LES model for

premixed and non-premixed turbulent combustion

By J. P. Legiert, T. Poinsott:_ AND D. Veynante¶

A new LES subgrid scale turbulent combustion model, adapted to combustion regimes
which are neither perfectly premixed nor non-prenfixed, is tested in a simplified config-

uration. This model does not require any a priori assumption on the flame structure

and is able to compute flows where both premixed and non-premixed flamelets coexist.

Three combustion regimes identified in an experiment conducted at Ecole Centrale Paris,

anchored, lifted and blown-off flames, are successfully recovered in numerical simulations.

1. Motivations and objectives

Turbulent flames in most gas turbines are neither perfectly premixed nor perfectly non-

premixed and require the development of large eddy simulation (LES) model adapted
to this situation. Unfortunately, very few studies have tried to address these problems

because they gather the complexities of pure mixing (without combustion) of ignition,

of partially or perfectly premixed combustion, and of non-premixed combustion. All of

these regimes may be encountered simultaneously in a gas turbine, and a proper model
should be able to handle all of them. This is especially true for recent technologies like

LPP (lean premixed prevaporized) combustors which are designed to mainly operate in a

lean premixed mode but are prone to flame flashback (i.e. a flame propagation upstream

of its designed location), a regime dominated by diffusion flames. Being able to predict

flashback requires models which are not yet available.

Many LES studies have been published for mixing (Pierce & Moin (1998)), for premixed

flames (Bourlioux Moser & Klein (1996), Veynante & Poinsot (1997), Im, Lund & Ferziger

(1997), Piana, Ducros & Veynante (1997), Boger et al. (1998), Colin et al. (2000a)), or
for diffusion flames (Desjardins & Frankel (1999), Moin, Pierce & Pitsch (2000)). But all

of these models are derived taking explicitly into account the flame topology, premixed

or not, thereby limiting the predictive character of simulations when the exact regime of

combustion is not a priori known.

In the present work, a new model called DTF (Dynamic Thickened Flame) is proposed

to compute mixing, diffusion, and premixed flames simultaneously. This objective is

achieved modifying the thickened flame model derived for premixed flames. Instead of

using a constant thickening factor (Colin et al. (2000a)), a local thickening factor F is

active only in the vicinity of the flame front (F > 1) and relaxes to F = 1 (no effect)

far away from the flame. A potential advantage of the model is that outside of the

flame zones, thickening is suppressed and mixing can be predicted correctly. This point

t CERFACS, Av Coriolis, Toulouse Cedex, Prance
:_ Institut de M(_canique des Fluides de Toulouse, Institut National Polytechnique de Toulouse

and CNRS, 31400 Toulouse CEDEX, France
¶ Ecole Centrale de Paris and CNRS, 92295 Chatenay Malabry CEDEX, France
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is important in gas turbines where pure mixing (without chemical reaction), premixed,
and non-premixed zones may coexist.

The DTF model (Section 2), is tested in a two-dimensional geometry corresponding
to an experimental burner developed at Ecole Centrale Paris and described in Section 3.

Simple one-dimensional tests are presented in Section 4. Section 5 presents LES runs and
discusses numerical results.

All computations are performed with AVBP, the LES code developed by CERFACS.

The numerical scheme is third order both in space and time (Colin & Rudgyard (2000b)).

2. Principle of the Dynamically Thickened Flame (DTF) model

In this work, a simple one-step scheme is used to describe propane/air chemistry:

Calls + 5(02 + 3.76N2) --+ 3C02 + 4H20 + 18.8N2 (2.1)

The fuel consumption rate is given by:

+: (,
where T= is the activation temperature, WE and Wo are respectively the atomic weights
of propane (WE = 44) and oxygen (Wo = 32). The prexponential constant A is fitted to

provide correct flame speeds for lean premixed flames when compared to full chemistry
results. Chemical parameters are:

A = 1.65.10 llcgs ; T. = 15080K ; PF = 0.5 ; vo ----1 (2.3)

The fuel mass fraction YF balance equation is:

apYF
0---_ + V. (pu) = V. (pDVYF) - (OF (2.4)

where usual notations are retained.

The thickened flame model is an extension of the initial model proposed by Butler &

O' Rourke (1977) for premixed flames. These authors showed that multiplying species

and heat diffusion coefficients by a factor F (i.e. D becomes DF) and decreasing the

exponential constant by the same factor F (A is replaced by A/F) in Eq. (2.4) provides

a flame propagating at the same laminar flame speed s o than the non-thickened flame

but its thickness is increased by a factor F and becomes 6_ = Fa_. Adjusting F to

sufficiently large values (typically between 10 and 100 in most gas turbines) allows the
flame to be resolved on an LES grid.

This initial model can be easily extended to dynamic thickening, depending on time

and spatial location, by recognizing that a premixed flame where the thickening factor
F changes spatially still propagates at the laminar flame speed s_ (Cuenot, 2000, pri-

vate communication). The mathematical proof of this finding is formally similar to the

derivation of the Howarth-Dorodnitzyn transformation introduced to analyze variable

density flows under boundary layer approximations as constant density flows (Williams
(1985)). The thickening factor F may then be modulated from large values inside the

reaction zone (where the reaction rate, inducing large gradients, has to be numerically

resolved) to unity away from the flame front (to avoid a modification of mixing descrip-

tion by changing molecular diffusion coefficients), keeping the right propagation speed
of a laminar premixed flame. The sensor used to determine whether the flame should be
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FIGURE 1. Dump-stabilized burner configuration. Experiment developed at EM2C lab., Ecole
Centrale Paris, France.

thickened or not is based on a "Arrhenius-like" expression:

f_=Y_ Y(_ exp

This sensor detects the presence of the reaction zone but is active in a broader zone than

the reaction rate because of the F parameter which artificially decreases the activation

temperature (F < 1). The sensor fl controls the value of the thickening coemcient F

through:

F = 1 + (Fma_ - 1)tanh

where ftmax is the maximum of f_ (which can be determined analytically for a stoichio-

metric premixed flame) and fl is a parameter controlling the thickness of the transition

layer between thickened and non-thickened zones.
As shown by Angelberger et al. (1998), the thickening procedure allows propagation

of the flame on a coarse grid but reduces the flame response to the smallest turbulent
motions. To overcome this difficulty, Angelberger et al. (1998) and Colin et al. (2000a)

have derived an efficiency function E to account for the unresolved flame wrinkling.

This function E depends on the thickening factor F, the length scale Ae/5°L, and the

velocity u'_ J/S°L ratios (Ae is the combustion LES filter size and u'A, the subgrid scale
rms velocity) and is used, as a first step, without modification in the present work. In the

practical implementation of the thickened flame model, the molecular diffusion coefficient

7? is replaced by EFTP and the pre-exponential constant A of the Arrhenius law (Eq. 2.2)

by EA/F.

3. Experimental configuration and stability maps

Fig. 1 presents the experimental configuration developed at the EM2C laboratory

(Ecole Centrale Paris, France) and used here to test the DTF model. Two propane
streams are injected through small slots (5 mm height) into an air coflow. Two backward

facing steps (25 mm height each) promote the flame stabilization. The combustion cham-
ber, downstream of the fuel injector lips, is 300 mm long, 100 mm height, and 80 mm

depth. The experiment is designed to produce two-dimensional flows to simplify optical

diagnostics (CH and (;'2 radical emission, laser induced fluorescence on OH radical,... )
and model developments and validations. The maximum burner power is 300 kW.
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FIGURE 2. Combustion regimes observed in the EM2C burner displayed in Fig. 1 and plotted
as a function of the fuel and air mass flow rates. The global stoiehiometric line, where fuel and
air axe injected in stoichiometric proportions, is also indicated.

The burner exhibits various operating regimes, summarized in terms of air and fuel
niass flow rates in Fig. 2:

• Rim stabilized (anchored) flames: for low fuel and air flow rates powers and, accord-
ingly, low burner powers, flames are stabilized a few millimeters downstream of the fuel
injectors (Fig. 3a). This regime corresponds to "anchored" flames.

• lifted flames. For higher reactant flow rates (higher powers) and rich overall equiv-

alence ratio (excess of fuel compared to the among of air injected), the flames lift from

the injectors and are stabilized a few cm downstream of the injectors in the vicinity of

recirculation zones induced by the backward facing steps (Fig. 3b). This regime is re-
ferred here as "lifted" (flames are far from the injectors lips) but is very different from

the so-called lifted flames encountered in jet diffusion flames without recirculation zones.

Here, combustion is stabilized by the hot gases recirculating behind the steps near tile
injectors.

• Extinction. For high reactant flow rates but too lean overall equivalence ratio, the
flame gets quenched.

• The transition from one regime to another is accompanied by oscillations (instabil-
ities).

This simplified burner exhibits many characteristics observed in modern gas turbine

burners: the existence of multiple flame regimes (anchored or lifted) and of sudden ex-

tinctions. This comhustor appears, therefore, to be a good test configuration for models.
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FIGURE 3. Combustion regimes observed in the EM2C burner and visualized using mean CH

radical spontaneous emission, corresponding to the mean reaction rate. (a): "anchored flame"

regime. The flame is stabilized in the vicinity on the fuel injectors but is not anchored on the

lips. (b) "lifted flame" regime where the flame is stabilized by recirculation zones induced by the

two backward facing steps. Experiments performed by B. Varoqui6, EM2C Lab., Ecole Centrale

Paris.

4. One-dimensional laminar premixed flame computations

As a first validation example, one-dimensional laminar premixed flames temperature

profiles are compared in Fig. 4 for a non-thickened flame (F = 1), a thickened flame with
constant thickening factor (F = 20 everywhere), and a dynamically thickened flame with

Fm_ = 20.
For the chosen conditions (P = 1 atm, equivalence ratio ¢ = 0.6, and fresh gases tem-

perature Tu = 300 K), all flames propagate at the same speed s ° = 14 cm/s. The thick-
ened flames are obviously much broader and can be resolved with coarser grid meshes:

the thermal thickness of the unthickened flame is 0.65 mm and becomes 13 mm for the

two thickened flames. The dynamically thickened flame is slightly thinner than the initial
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FIGURE 4. Temperature profiles for a non-thickened lean premixed propane/air flame (solid
line), a thickened flame with F=20 (squares) and a dynamically thickened flame with T'_ = 20
(crosses). Atmospheric pressure (P = 1 atm), fresh gases temperature T, = 300 K, equivalence
ratio ¢ = 0.6.

Case Fuel flow Air flow Global equivalence Air Fuel Reynolds
rate (g/s) rate (g/s) ratio ¢ speed (m/s) speed (m/s) number

Anchored (C) 0.33 35 0.15 13 0.6 23000

Lifted (D) 5 58 1.34 23 11 35000

Blow-off (E) 5 145 0.54 55 11 88000

TABLE 1. Operating flow conditions for LES tests. The Reynolds number is evaluated in the
outlet section of the burner. The air and fuel speeds correspond to the maximum velocities
measured in the air and fuel inlets. The global equivalence ratio ¢ compares the overall amount
of fuel and air injected in the burner but is not the local equivalence ratio involved in laminar
diffusion flames. Points C, D, and E are also displayed in Fig. 2.

thickened flame in the preheating zone because the sensor 12 is based on a reaction rate
type formulation, but differences remain small.

5. LES results

LES were conducted for three regimes, referred to as B, D, and E (see Fig. 2). The first

case, (C), corresponds to an anchored flame; in the second one, (D), the flame is lifted

whereas a flame blow-off is expected in regime (E). Unresolved fluxes are modeled using
a filtered Smagorinsky model (Nicoud & Ducros (1997)), and combustion is described

using the DTF model (section 2). Two meshes were used: a coarse grid (62644 nodes)
and a fine one (262000 nodes). For these first tests, two-dimensional simulations are

performed and only the upper half of the burner is computed (the flow field is assumed

to be symmetrical along the burner axis). All model parameters were kept constant for
all simulations. Operating flow conditions are summarized in Table 1.
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FIGURE 5. Anchored flame (case C): mixing index YFYo (lines) and temperature (gray-scale)
fields. Zoom in the vicinity of the upper fuel injector.

5.1. Anchored flame (Case C)

For low reactant flow rates and low powers, flames are stabilized in the vicinity of the

fuel injector, but they do not touch the injector. A small lift-off height is observed ex-

perimentally (Fig. 3a) as well as in the LES results. Fig. 5 presents a view of the flow
close to the fuel injector for case C: the mixing index ]_'Yo (lines) and the temperature

(gray scale) fields are displayed.
The flame is stabilized by a couple of "triple flames": one for the upper air jet and

some part of the fuel stream, and another one for the central air jet and the rest of the

fuel stream. Even though the attachment region flaps slightly, the structure of the zone

close to the injectors appears rather steady. Downstream, pockets of burnt gases oscillate

in the duct, but the anchoring mechanism seems unaffected by these flow perturbations.
The recirculation zone does not contain hot gases and is not involved in the stabilization

process.

5.2. Lifted flame (Case 19)

For larger reactants flow rates and higher burner powers, the flame cannot remain at-
tached to the injector lips and is stabilized by the recirculation zones. A typical snapshot
of the flowfield in case D is presented in Fig. 6: the fuel mass fraction YF (gray scale)

is superimposed on the reaction rate field and the two stoichiometric lines (bold lines).

The first striking feature of this computation is that, even though tirol and oxidizer are

injected separately into the burner, only a few flame zones exhibit a diffusion-like struc-
ture and lie around the stoichiometric iso-surface; in fact, strong mixing occurs before

any combustion starts. When combustion begins, a strong premixed flame is observed.

This premixed flame burns rich mixtures and leaves fuel in its product. This fuel can
burn with air downstream or in the recirculation zone.

This description is confirmed by cuts performed at two locations (A and B). For loca-

tion A on Fig. 6, a cut (Fig. 7a) reveals a typical diffusion flame structure where oxidizer
and fuel are found on separate sides of the flame fl'ont. However, the fuel found at point

A is mixed with burnt products so that the diffusion flame structure observed for this

point is very different from the usual fuel (cold)/oxidizer configuration used in flamelet
models. First, the maximmn fuel mass fraction is about YF _ 0.05, far from the maxi-
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FIGURE 6. Lifted flame (case D): fuel mass fraction }'F (gray scale) and reaction rate (contour
lines) fields are superimposed on the stoichiometric iso-surface (bold lines). Arrows A and B
denote locations of cuts displayed in Fig. 7.
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FIGURE 7. Lifted flame (case D): fuel, oxidizer and temperature profiles across the flame front

in locations A (left) and B (right) displayed in Fig. 6.

mmn value YF = 1 found in a pure propane/air diffusion flame (the fuel is diluted within

burnt gases). The fuel temperature also corresponds to the burnt gases temperature of
the previous rich premixed flames. The diffusion flame in location B burns cold oxidizer

with a hot mixture of fuel and combustion products. At location B (Fig. 7b), a rich
premixed flame is observed: fuel and oxidizer enter the flame front from the same side at

a very high equivalence ratio. This premixed flame separates cold fuel/air rich mixture
and burnt combustion products.

This occurrence of a rich premixed fame in the flame stabilization process is, a priori,

surprising but may be easily explained. Tim mixture fraction z is defined as (Williams
(1985)):

I ( g YF Yo )z- _+1 YF° yo +1 (5.1)

where l:_ and Y_ are respectively the fuel and the oxidizer mass fractions in the pure

fuel and air streams. ¢I, = S,F/,ov°/v° is the local equivalence ratio and s the stoichiometric

mass coefficient, which corresponds to the mass of oxidizer required to burn a unit mass

of fuel. For a propane/air diffusion flame: 1_ = 1; Y_ = 0.23; s = 3.64 and • = 15.8. The
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FIGURE 8. Analysis of the rich premixing formation by molecular diffusion when the stoichio-
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metric mixture fraction z,, _ 0.06. Left: mixing laver. Right: the fuel (Yr/ F; ), oxidizer
(Yo/_; .... ) and the mixing index (YvYo/Y_Y°; _ ) are plotted as a function of the
mixture fraction z. The stoichiometric mixture fraction z_t ,,_0.06 is also indicated (.... ).

mixture fraction z is a passive scalar, unaffected by combustion processes and verifying

z = 0 in the air stream and z = 1 in pure propane streams.
Molecular mixing between air (z = 0) and propane (z = 1) streams occurs around the

intermediate z-level z = 0.5, but reactants are in stoichiometric proportions when the

mixture fraction takes the value z_t = 1/(_ + 1) _ 0.06 (for usual hydrocarbons, the

stoichiometric value z_t is strongly shifted towards the oxidizer stream). Mixtures are

lean when 0 < z < z_t _, 0.06 but rich for z_, _ 0.06 <_ z < 1. Accordingly, most of the

premixed reactants correspond to rich mixtures. This point is illustrated in Fig. 8. Of

course, this analysis holds only at a local level when mixing is controlled by molecular

diffusion between pure oxidizer and fuel streams. If all of the reactants injected into the

combustor chamber perfectly mix before burning, the mixture equivalent ratio would be

the global equivalence ratio ¢.
The LES data can also be averaged in order to be compared to measurements. Fig. 9

shows mean fuel mass fraction, temperature, and reaction rate fields: the reaction rate
field confirms that the flame is lifted and stabilized in the vicinity of the recirculation

zone. This zone contains hot gases and acts as a heat tank providing the energy required

to stabilize the flame. The fuel mass fraction field shows that the leakage of fuel towards

the recirculation zone due to the previous burning of rich mixtures appears even on the

mean flow.

5.3. Blow-off (Case E)

Starting from operating conditions of point D where a lifted flame was observed (Fig. 2),

a computation is performed increasing the air flow rate to reach the regime E (see Ta-

ble 1 and Fig. 2). Very rapidly, after a time of about 20 ms, the fresh air entering the
combustion chamber dilutes the mixture involved in rich premixed flames (Fig. 10) and

starts filling and cooling the recirculation zone. As soon as this zone is too cold, the
whole stabilization process is compromised and the flame quenches as seen in the last

snapshots of Fig. 10 where the hot gases are convected towards the burner exhaust while
the combustor is filled with premixed cold reactants. This test confirms that blow-off can

be predicted with the DTF model (usual simple flamelet models cannot predict blow-off
because the flame is generally assumed to burn in a steady state regime). Moreover,
this blow-off is found for flow rate values corresponding to experimental observations. Of

course, more tests are required to determine the exact quenching limits and to validate

the DTF model, but this finding is very promising.
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FIGURE 9. From top to bottom, averaged fuel mass fraction, temperature, and reaction rate

fields for case D (lifted flame).

FIGURE 10. Blow-off description. Starting from operating conditions of point D (established

lifted flame), the air flow rate is increased to reach the point E conditions (see Fig. 2). Mixing

index Yr_b (gray scale) and temperature (contour lines) fields are displayed for four successive

instants frotlt top to bottom. The burner is t)rogressively filled with cold t)remixing and the
flame blows off.

6. Conclusions

A dynamic thickened flame (DTF) model is developed for large eddy sinmlations of
turbulent reacting flows and is tested against experimental data. This model extends

the thickened flame model (TF) developed by Angelberger et al. (1998) and Colin et al.

(2000a) from the pioneering work of Butler & O' Rourke (1977). In the DTF model, the

thickening factor F is larger titan unity only in reaction zones, and diffusion processes
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without chemical reactions are not affected. Accordingly, the DTF model is expected to

be suited to situations where non-premixed, partially premixed, and perfectly premixed

flames are encountered such as lean premixed prevaporized (LPP) combustors developing

for gas turbines.
The DTF model implemented is the AVBP code of CERFACS, and numerical results

are compared to experimental data obtained in a turbulent propane/air non-premixed
burner at Ecole Centrale Paris (France). This burner exhibits various regimes ("an-

chored", "lifted", and "extinction") recovered in numerical simulations. In the so-called

"lifted" flame regime, tile numerical simulations show that combustion mainly occurs in

rich prernixed flames stabilized by the recirculation zone acting as a hot gases tank. This

finding is a priori surprising but is in agreement with a simple physical analysis: when

propane and air are mixed by molecular diffusion without combustion, most of the pre-

mixing corresponds to rich mixtures (fuel in excess) because the stoichiometric iso-surface

is strongly shifted towards pure oxidizer for usual stoichiometric flames (zs_ _ 0.06 when

mixing develops around z _ 0.5). Some diffusion flames are also observed but do not

correspond to usual flamelets because cold oxidizer burns with a hot mixture of fuel and
combustion products. Accordingly, usual flamelet models are not adapted to correctly

predict such of lifted flame regimes.
Numerical results are very promising, but further validations against precise instanta-

neous and averaged experimental data, not yet available, are required.
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A turbulent flame speed closure model for LES of
industrial burner flows

By P. Flohr_ AND H. Pitsch

A combustion model based on a turbulent flame speed closure (TFC) model is proposed

for large-eddy simulations (LES) of lean premixed combustion in industrial gas turbine
burners. This model has been originally proposed in a RANS context; the extension to

LES is found to be fairly straight-forward, i.e. the turbulent quantities that determine

the turbulent flame speed are obtained at the level of the grid cut-off. The model has

been applied to a simple premixed jet flame in a backward-facing step combustor to

investigate the combustor response to forced excitations.

1. Introduction

The demand for ever decreasing emissions levels of modern gas turbines has led to

the development of lean-premixed combustor technology. Here, low emissions can be

achieved by perfecting the premixing of the fuel-air mixture and by operating at low

flame temperatures, i.e. fuel-lean conditions. The desire to operate gas turbines in low

emission mode over the full engine operating range often brings the combustion process

dangerously close to lean extinction. As a consequence, the combustion at part-load
levels is often accompanied by thermo-acoustic instabilities which may deteriorate the

combustion process or even reduce the combustor life. Therefore, there is a strong need

for predicting stability limits of industrial combustors.
LES is often seen as a suitable tool for accurately predicting both flame stability

and fuel-air mixing (Angelberger et al. 1998). Because the largest turbulence scales are

explicitly computed in LES and only the smallest, low-energy modes are modeled (where
the assumption of local isotropy is expected to hold better than for the largest scales),

the prediction of mean flow and mixing is often found to be superior to classical steady
RANS models which frequently fail in the highly turbulent, strongly swirling flows that,

are typically employed in gas turbine burners (Kim et al. 1999). On top of that, it

intrinsically captures the unsteadiness of extinction and instability processes.
While LES has reached some degree of maturity for non-reacting flows, its application

to reacting flows is still being developed, and various modeling approaches have been

proposed in the context of premixed combustion, see Veynante & Poinsot (1997), Peters

(2000) and references therein. Most of the proposed models have previously been used,

or could very similarly be applied, in steady RANS calculations. This is not surprising
because the characteristic length- and time-scales where combustion takes place are typ-

ically well below the resolved grid scales, and the combustion process has to be modeled

entirely at the subgrid level.
In this work we explore the Turbulent Flame speed Closure (TFC) model, which has

t ALSTOM Power Ltd., Segelhof 1, CH-5405 Baden-Daettwil, Switzerland
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previously been successfully applied in a tlANS context to gas turbine combustion (Zi-

tnont et al. 1997, Polifke et al. 2000). The model is based on solving the one transport
equation in addition to the non-reactive case for the reaction progress variable c. Closure

is achieved via a source term involving a turbulent flame speed ST. The turbulent flame

speed is obtained from theoretical analysis based on the assumption that combustion is

in the "thickened flamelet" regime, which is typical of premixed combustion at gas tur-

bine conditions. The robustness and efficiency of the model (Polifke et al. 2000) render
it suitable for engineering applications.

The final goal of this work is to perform LES of unstable combustion processes in

industrial burner flows. Here, we apply the model to a generic premix burner that has

already been extensively studied, both experimentally and numerically (Poinsot et al.

1987; Angelberger et al. 1998). This configuration showed strong self-excited instabilities

at certain operating conditions and provides an example for the investigation of the

mechanisms by which the unsteady flow and heat release fields are coupled; the case is

also suitable for determining whether the subgrid closure suggested above is suitable to
capture such effects.

In addition to the need for an appropriate combustion subgrid closure, the application

of a LES tool to industrial configurations must meet two important criteria: first, the
tool has to be able to handle complex geometries and secondly, it must be efficient and

robust if it is to be used in a design process. It is, therefore, desirable to incorporate

LES models in the frame of standard, unstructured, industrial flow solvers. However, it

is not yet clear whether such tools which necessarily have to balance robustness against

numerical accuracy and solver speed against model flexibility are suitable for engineering-
level LES. Therefore, part of this summer research program included performing a basic
test of turbulent pipe flow to assess the LES capabilities of an industrial flow solver.

2. Model formulation

2.1. The filtered c-equation

The chemical reaction is described using a progress variable c, which is defined as a

normalized mass fraction of products such that c = 0 in the unburnt mixture and c = 1

in the products. Using the Favre-averaged filtering on the transport equation of the
progress variable one obtains

0---7-+ _7. (_fi_) = _7. (_nV_) + _Tq + zb--7 (2.1)

where _ denotes the Favre-averaged progress variable, such that pc = pc. _ is the molec-
ular diffusivity, q incorporates the subgrid fluxes, and u)--7is the reactive source term.

Closure for the subgrid flux

q = cu - cu (2.2)

is obtained by making the usual gradient-diffusion assumption

q = _t _7_ (2.3)

where the eddy diffusivity _t is obtained from the turbulent viscosity ut by making the
assumption of the existence of a turbulent Schmidt number,

_t = ut/Sct. (2.4)

In this work, we assume the turbulent Schnfidt number to be constant, Set = 0.7, and
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we obtain the turbulent viscosity from the standard Smagorinski model

., = (cs_)2_/2_ijsij, (2.5)

where Cs = 0.1 is a model constant, A is the filter cut-off scale, and S_j is the large-scale

strain rate tensor.

Tile ctmmical reaction term in (2.1) is modeled by

w-_ = -fi,,StAIV OI, (2.6)

where _,, is the density of the unburnt mixture and S_ is a turbulent flame speed that

depends on the physico-chemical characteristics of the combustible mixture and the local
turbulence at the subgrid level. Using (2.3) and (2.6) in (2.1) and neglecting molecular

diffusion effects, we obtain

0-_ (_ ut _) __,St_,_7_, (2.7)0--Y + V. (pfi0) = V p_-_c W +

Equation (2.7) describes a combustion front that is characterized by a turbulent flame

speed which quickly adapts to a local equilibrium value and a flame brush thickness

which grows according to turbulent dispersion by the subgrid scales.
It is noted that the assumption of gradient-diffusion transport is not in contradiction

with the existence of counter-gradient diffusion, and counter-gradient transport is, in

fact, implicitly modeled in the chemical source term (2.6) as shown by Zimont et al.

(2000).
For very large times, the increase in thickness of the flame brush is compensated by

the local flamelet propagation, and the first term on the right-hand side of (2.7) should

be incorporated in the reactive source term. However, it can be shown that the time scale

required to achieve this equilibrium is nmch larger than the integral turbulent time scale

7"t (Zimont et al. 2000). In industrial combustors the residence time is usually comparable
to the turbulent time 7"t, and (2.7) is therefore the appropriate model equation.

2.2. Zimont's model of the turbulent flame speed

For a complete closure in (2.7) one has to provide a model for the turbulent flame speed

St. The models are usually of the form

S-A = 1 + f(Re, Da, Pr), (2.8)
S_

where St is the laminar flame velocity and f is a functional of the hydrodynamical

and physico-chenfical parameters, expressed via the Reynolds, DamkShler, and Prandtl

numbers

u (2.9)Re- utlt Da = Tt Pr = --.
v re X

ut, It and rt = It/ut are the integral turbulent scales, r_ = x/S{ is the chemical time

scale, and X is the thermal conductivity.
Zimont (1979) proposed a model for St which is valid in tile "thickened flamelet"

regime. This regime is characterized by very large Reynolds numbers and moderately

large DamkShler numbers such that

Re>> 1, l<Da<Re 1/2. (2.10)

The second inequality indicates that the DamkShler number is large, but, not large enough
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for the combustion to occur in the laminar flamelet regime. In other words, the laminar

flame thickness is much smaller than the integral length It but significantly larger than

the Kohnogorov scale _1. Zimont's (1979) analysis for this regime led to the following

expression for the turbulent flame speed

St
_ (RePr) 1/2 Da -U4 (2.11)

Without repeating his analysis, which is based only on dimensional arguments and the

existence of a turbulent cascade according to Kohnogorov (1941), we state here his two

main modeling assumptions:

(a) Tile smallest eddies which are smaller than the laminar flame front thickness pen-

etrate the front to increase the internal diffusion process and thus the thickness of the

flame; this process is repeated until equilibrium is reached between convective and diffu-

sive effects, leading to a thickened fame front of thickness a*.
(b) Turbulent eddies which are larger than the effective flame front thickness 6" wrinkle

the fiont to increase the effective front surface; the increase in flame speed is proportional
to the area increase due to the turbulence.

The application of this model to LES is straightforward. The turbulent large scales

ut and It only enter Zimont's analysis via the energy dissipation rate e ,-_ u_/It, which

holds for any length scale l and associated velocity scale ul in the Kolmogorov cascade,

_ u3/l, where It >_ l >_ 71. This implies that we can replace the turbulent large-scale

fluctuations by the fluctuations at the cut-off scale (uA, A), provided that tile large-eddy

filter scale A is larger than the flame thickness 6*. V_ _.obtain for the turbulent flame

speed Sff defined at the cutoff level,

SA = 1 + A (ReaPr) 1/2 Da_ l/'t, (2.12)
&

_,v|lere

uaA A
Re_x - , DaA = --. (2.13)

l/ uA?-c

The original formulation of Zimont (1979) has been modified to recover the laminar flame

speed in regions of low turbulence activity. Equation (2.12) also includes a proportionality

constant A of order unity. A = 0.52 was found by Zimont & Lipatnikov (1995), where

turbulent flame speeds were computed front integral turbulent scales. Assuming that the

subgrid closure results in the appropriate level of energy dissipation, the same model

constant has been used in the present study.

The filter scale A is obtained from the box filter over grid cells

A = 2(A,AyA_) l/a, (2.14)

and the subgrid scale velocity u_ is estimated from the Smagorinski subgrid viscosity as

t/t

-- CsA 2_ijSij. (2.15)u,x- CsA

It is to be noted that the model formulation is now grid dependent, and it should be

verified that the flame thickness does not exceed the grid scales, i.e. Da:x > 1. Indeed,

Zimont et al. (1997) estimate Da = 3 for a gas turbine burner which wouht invalidate

the subgrid closure if A << It.
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2.3. The effect of flame stretch

Equation (2.12) leads to larger flame speeds for increasing turbulence intensity; however,
at very high levels of turbulence intensity, it is observed experimentally that the tur-

bulent burning rate is limited or may even decrease (Zimont & Lipatnikov 1995). This

"bending effect" has been incorporated in (2.12) by introducing a stretch parameter G
as a correction factor for the turbulent burning velocity (Zimont & Lipatnikov 1995),

which we adopt here at the velocity subgrid level. G is the probability of unquenched

flamelets and is defined as

{ }
a -_ ln(A/7l) is the standard deviation of the log-normal distribution of the dissipation

rate _ = u3_/A, and ecr = 15ugffr. gc_ is a critical flamelet quench rate that is obtained
either from laminar flame computations or can be estimated from gc_ "_ S_/X.

In writing (2.16) for the turbulent flame speed at the grid cut-off level, we assume

that the significant contribution for the dissipation spectrum is contained entirely in

the subgrid scales. For very low dissipation rates e _( e_r, no flame quenching occurs

(G = 1). For very high dissipation rates e _ e_r, all flames are quenched locally by the
turbulence (G = 0). It should be noted that the modeling of flame quench in this way is

only qualitatively correct. In particular, estimates of the appropriate stretch rate gcr are
connected with relatively large uncertainties; for more details see Polifke et al. (2000).

Also, (2.16) does not take into account unsteady effects which are known to be very

important for extinction and (re-)ignition.
The uncertainty of this model parameter is perhaps mostly related to the fact that

G depends on the entire turbulence spectrum. Specifically, G decreases for smaller Kol-

mogorov scales at constant e, Ccr. In fact, no clear experimental evidence exists for flame
extinction by small-scale turbulence, let alone its dependence on Reynolds number. In-

deed, the simulations by Meneveau & Poinsot (1991) suggest that the smallest eddies

have no effect on the flame front mainly because their lifetime is too short. Fhrther re-

search is necessary to clarify whether (2.16) is appropriate in a LES context or whether
the flame stretch should be associated only with the largest turbulent motions which are

explicitly computed.
In this work, the application of the stretch parameter at the subgrid level was found

to be crucial in the case of a flame that is stabilized in the vicinity of a backward-facing

step (see Section 4), and a similar finding has been reported by Weller et al. (1998).
Flamelet straining reduces the effective reaction rate close to the expansion, which has

a large impact on the local heat release in the flame-front roll-up.

3. Numerical implementation

Equation (2.7) has been implemented in a standard industrial flow solver (Fluent

5). This solver provides a basic LES capability of cold flow simulations with the stan-
dard Smagorinski subgrid closure with near-wall damping and approximate log-law wall
boundaries. The unstructured finite-volume solver uses second-order central differencing

for convective momentum fluxes and second-order upwinding for scalar fluxes (such as

for the reaction progress variable c). The SIMPLE pressure-correction scheme is used

for time-advancement; discretization of pressure in the correction step is second-order

accurate.
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test case grid (t\_ x Nr x N+) resolution (r +)

DNS_IFS 38 x 32 x 64 0.6

DNS_KEF 38 x 32 x 64 0.6

DNS_FINE 64 x 32 x 128 0.3

TABLE 1. Setup for pipe flow at R,e_ = _ = 180, R = 1 L = 10.
v
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FIGURE 1. Mean flow profiles. (a) velocity scaled with center line velocity Uc; (b) velocity scaled

with friction velocity u_ = _/-_-_. Symbols: DNSIFS (--); DNSR_, ( .... ); DNSFI,v
(........ ).

This setup is generally acceptable for performing engineering-level LES. However, be-

cause no validation data exists for the LES implementation, it was felt that a basic solver

validation should be carried out as part of this study. The capabilities of the flow solver

to resolve the turbulent fluctuations were assessed at the most basic level: Is the solver

capable of maintaining statistically steady turbulence in a periodic wall-bounded flow,

or does the inherent numerical diffusion damp out all fluctuations? If turbulence can be

maintained, how do statistics compare with those obtained from the thoroughly validated

flow solver that has been developed at CTR?

To exclude any effects of the subgrid closure and the approximate wall model, a DNS of

streamwise periodic pipe flow was chosen as a test case. The parameters of the setup and

flow are given in table 1. The computation with Fluent (DNS_IFS) is compared with two

results that were obtained with CTR's DNS code; DNS_REF is a reference computation

on the same grid, and DNS__FINE is a reference computation at higher resolution. The

reference flow solver is also second-order accurate.

The results for the mean flow profiles are presented in Fig. 1. While the rescaling with

the center line velocity (Fig. la) suggests that the accuracy of DNS_IFS is in between the

reference computations at different resolutions, the rescaling with the friction velocity

in Fig. lb reveals that the velocity levels in the log-law region are overestimated by at

least 10%. This is an indication for stronger damping in the near-wall region for Fluent
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FIGURE 2. Velocity fluctuations of the resolved scales, normalized with the friction velocity. (a)
- streamwise fluctuations; (b) - radial fluctuations. See Fig. 1 for symbols.
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FIGURE 3. Sketch of the simple jet flame from the experiment by Poinsot et al. (1987).

which is likely to be due to higher levels of numerical diffusion. This is confirmed by
the second-order statistics which are presented in Fig. 2. While streamwise fluctuations

display a reasonable agreement with the reference computations, Fig. 2b reveals that wall-
normal fluctuations are significantly underpredicted. It is also interesting to note that

computing times for Fluent are about 100 times slower than for the optimized DNS flow
solver (corresponding to several days on a 4-processor workstation for a full simulation).

However, in light of the fact that the time-advancement scheme is not optimized for
a simulation where the timestep is limited by the smallest turbulent time scale and

usually not by numerical stability, and given that an unstructured general purpose code

is compared here with a structured, vectorized solver, this overhead is, in fact, acceptable.

4. Application to a model combustor

The TFC subgrid closure model has been applied to a generic premixed propane-air

jet flame that is stabilized in the expansion behind the injection slot; the configuration,

shown in Fig. 3, is based on an experiment by Poinsot et al. (1987). The experiment
consisted of five parallel, essentially two-dimensional slots, of which one is indicated in

the sketch. The experiments showed various modes of instability with strong self-excited

oscillations. The mode at 530Hz was found to be one of the most unstable.
The self-excitation of combustion instabilities is linked to the phase relationship be-

tween the acoustic pressure field and unsteady heat release via Rayleigh's criterion. The

criterion implies that acoustic instabilities are amplified if pressure and heat release fluc-

tuations are in phase. The phase relationship is thus important when quantifying the

stability properties of a burner, and it is used here to qualify the usefulness of the LES

flame speed closure for the sinmlation of unsteady combustion.
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numerical setup model parameters

no. cells Am,_ uln At & T_ T_d X gcr

31500 0.1unn 6.4 m/s 5. 10 -6 0.36 m/s 300 K 2190 K 2.2. 10 -5 6000 1/s

TABLE 2. Setup for slot burner of a premixed, stoichiometric propane-air flame at atmospheric
conditions.

4.1. Setup and model parameters

The numerical sinmlation is based on a single slot with symmetry conditions at the

top and bottom boundaries as indicated in Fig. 3. We adopt here the model setup by
Angelberger et al. (1998), who numerically investigated this combustor with a flame

model based on artificial flame fi'ont thickening. The computations were performed in

two dimensions since flow visualizations in the experiment have indicated that large-scale
structures produced by the unsteady combustion were essentially two-dimensional, and

the computations by Angelberger et al. (1998) have indicated that this assumption is
reasonable.

Parameters of the setup and the combustion model parameters are summarized in

table 2. The model parameters for the TFC model are based on the detailed chemistry

calculations presented in Angelberger et al. (1998), while the critical strain parameter 9cr

is based on the rescaling procedure proposed in Polifke et al. (2000) to estimate critical
flame stretch in a fresh-to-burnt, opposed jet configuration. The local DamkShler number

has been estimated for this configuration as Da_ > 2, and the assumption of combustion

in the thickened flamelet regime with flame thickness below the subgrid level is expected
to hold.

The numerical setup does not contain the feedback between heat release and acoustic

fields because it is based on the incompressible (but variable density) flow equations.
Therefore, the self-excited instability from the experiment is simulated via the artificial

situation where the incoming mass flow rate is varied (assuming that the acoustic per-

turbations do not travel upstream to the fuel injector such that the fuel-air equivalence
ratio could be altered). The amplitude of the mass flow variations was set to ±25% of

the mean flow rate, which is comparable to the experimentally observed fluctuation lev-

els, and the single-frequency, sinusoidal forcing was fixed at 530Hz, corresponding to the
strongest instability mode in the experiment.

4.2. Results

The forced simulations were started after an initial transient in which the statistically

steady flame was established, starting from steady-state computations. In Fig. 4 we plot

snapshots of the unstable flame during one cycle of oscillation; as in the experiment, the
formation of mushroom like vortices is observed in the simulation. However, the vortices

form significantly further downstream than in the experiment as indicated in Fig. 4(c)

where we compare directly with a snapshot of the experiment obtained at the same phase
angle within the 530Hz cycle. A possible explanation for this effect is that the definition

of uA does not take into account dilatation effects, and thus the turbulent flame speed

is likely to be overestimated in regions of relatively weak turbulence intensity where a



A turbulent flame speed closure model for LES 177

(a)

(b)

FIGURE 4. Instantaneous snapshots of the reaction progress variable during one forcing cycle at

530 Hz. The time between each picture corresponds to a quarter period. Also included in the

figure is a snapshot taken from Poinsot et al. (1987), obtained at the same phase angle.
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FIGURE 5. Time history of reaction rates with and without flame stretch. Symbols: --

inflow rate; .... , reaction rate; ........ , reaction rate, no stretch.

roll-up wouht otherwise be observed. More sophisticated approaches to model u,, are

suggested in Colin et al. (2000).

Box-averaging the heat release rate over a region that resembles the observation window

frotn the experinlent (see Fig. 3) allows one to nlCasure the phase-lag r between reaction

rate _-T_(t + T) and forced inflow rate T/(t); both numerical and experimental results are

plotted in Fig. 5. Initially, numerical simulations were carried out with the correction

factor G = 1 everywhere because the effects of flame quenching were considered negligible

in a case where turbulence levels are generally moderate. However, without the stretch
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FIGURE 6. Snapshots of the ECB burner. Effect of flame stretch.

factor tile heat release rate peaks immediately after the area expansion, and this peak

remains attached throughout the forcing cycle, leading contrary to the experiment
where a phase angle of rr has been measured - to an almost in-phase relation between

heat release and inflow rate as also indicated in Fig. 5. This behavior is unphysical
because the large strain ill the vicinity of the step leads to reduced reaction rates and

thus a detachment of the flame. Applying the stretch factor (2.16) to this configuration
significantly altered the situation; tile flame was detached and the phase-angle rr from
tile experiment was recovered as shown in Fig. 5. A possible weakness of the model

is the presence of the reaction rate reduction parameter in the entire flow field. One

consequence of this is that the instantaneous flame structures are strongly affected by

the extinction strain rate. In Fig. 6 we show two snap-shots at the same phase angle

within the forcing cycle. While the lower figure is obtained with a stretch parameter

.qc,. = 6000, the upper figure corresponds to 9_ = 2000 (corresponding to the extinction

strain for the opposed jet configuration of fresh mixtures). Obviously, local variations in

reaction rates are observed; more importantly, however, the general flame shape, i.e. the

formation of the vortices and their phase-angle, is found to be very insensitive to the

absolute value of this model parameter, which is not known with great accuracy.

5. Conclusions

A model for premixed turbulent combustion based on a turbulent flame speed closure
(TFC) has been proposed in the context of large-eddy simulations. The model is an
extension of tile original formulation in a RANS context. Possible limitations of the

model due to its definition at the cutoff level and the uncertainties in modeling subgrid
flame quenching have been broadly discussed.

The model has been applied to a simple premixed jet flame in a backward-facing step
combustor. The results have indicated that a large-eddy simulation based on tile TFC

model is able to predict the forced combustor response. The agreement with a self-excited

instability mode at the same frequency as observed in tile experiment is good in terms

of its phase angle between the incoming flow rate and the box-window integrated heat
release rate.

The sinmlations in this study were based on a general-purpose industrial flow solver

which includes basic LES capabilities but which has not yet been validated in detail.

A simple validation study of a resolved low Reynolds number pipe flow revealed that
the solver is capable of reproducing first and second-order statistics with reasonable
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accuracy. While further validation work is necessary for both the flow solver and the
TFC-LES combustion model, the tool developed here appears to be appropriate to study

a full-scale gas turbine combustor in the near future.
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Modeling turbulent reacting methane
thermochlorination flows

By A.D. Harveyt AND H. Pitsch

Motivations for and complications involved in modeling turbulent reacting chlorination
flows are discussed. A confined turbulent nonpremixed reacting methyl chloride chlo-

rination flow is investigated numerically using large eddy simulation and a Reynolds

(Favre-)averaged Navier-Stokes approach with fully coupled chemistry and a detailed

multi-step kinetic mechanism. A laminar diffusion flamelet turbulent combustion model

is coupled with both the LES and the RANS codes to close the chemical source terms.
A RANS solution neglecting chemical source term closure is also obtained. The different

calculations are compared, and differences in the solutions are discussed. Computations

including the flamelet turbulent combustion model predict a lower peak reaction tem-

perature and a more gradual temperature increase than predictions neglecting closure.

1. Motivations and objectives

Methylene dichloride (M2), chloroform (M3), and carbon tetrachloride (M4) are three

basic products of methane chlorination and are produced by high temperature gas phase
chlorination of methane or methyl chloride, (M1). Their primary uses are as industrial

solvents, making refrigerants, and the manufacturing of silicon. Methane chlorination

reactions proceed by a multi-step series of exothermic reactions which are stabilized in a
confined jet configuration where reactants are typically introduced at temperatures well
below the minimum activation temperature. Thus, sustained autothermal operation of

the device is strongly dependent on the re-circulation of heat furnished by the confined

jet design.
As cold incoming gases are heated by re-circulated products, chlorine atom concen-

tration increases exponentially. Eventually a sufficient chlorine radical concentration is

attained for the propagation reactions to proceed (producing heat). A portion of the
heat is recirculated back into the incoming feed and the remainder is convected out the

exit. As the flow in a confined jet reactor whose inlet temperature is sufficiently low is

made to increase, in premixed situations the flame speed decreases and the proportion
of heat re-circulated will eventually be insufficient to heat the resulting higher volume of

incoming fluid to levels capable of sustaining the reaction.
In large scale industrial chlorination devices operated near extinction, complex be-

haviors have been observed which include low frequency pressure and temperature os-

cillations and thermoacoustic excitations. This ultimately leads to extinction of the re-

action, excessive undesirable by-product formation, or the convection of highly reactive
chlorine in downstream equipment ill-suited for this type of exposure. Obviously these

outcomes are undesirable, and an important long term goal is to develop an improved

understanding of the unstable behaviors which preempts extinction and/or shutdown of

Jf The Dow Chemical Company, Plaquemine, Louisiana, bharvey@dow.com
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FIGURE 1. Comparison of computed (RANS/no closure) centerline temperature profiles in a
commercial scale premixed cldoromethanes reactor: o - plant data with inflow velocity, u = 2Ur ;
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a chloromethanes reactor. In the present study we use a laminar flamelet combustion

model, detailed kinetics, and current LES and RANS solution methodologies to study a

model nonpremixed methane chlorination device. We discuss combustion modeling issues
which will be addressed in ongoing and future studies to ultimately model more realistic

chlorination flows. The objectives of this summer research project are:

(a) Incorporate a laminar flamelet combustion closure model and detailed, multi-step
kinetics into both a chemically reacting RANS code and an LES code.

(b) Use the resulting codes to compute the turbulent reacting flow in a nonpremixed
methane thermochlorination device.

(c) Compare computational results, including the effects of turbulence closure with re-

sults obtained with the reacting RANS neglecting closure, and determine the importance
of closure modeling for chloromethane chemistry.

1.1. Past work

There have been a few documented attempts to model thermal chlorination of methane.

West et al. (1999) used a 5-step irreversible mechanism in a simple perfectly stirred re-
actor model that produced dynamical behavior similar to that observed in real reactors

operated near the extinction point. Acharya et al. (1991) used a second moment closure

method in which they assumed fluctuations in temperature and density were small and
it tt

considered only the correlations Y]I1Yc_2 and YM2YCt2 to model a methane chlorination
flow. They conclude that without more detailed kinetics and source term closure, CFD

does a poor job of predicting finite-rate chemistry effects, minor species formation, and

local reaction extinction. Often, undesirable side reactions, leading to complete decompo-

sition of the products, compete with the main desired chemistry. To study reactor designs
and operating conditions which improve selectivity to desirable products, it is important

to develop solution strategies capable of handling detailed kinetics. In this study we use

a relatively detailed mechanism consisting of 38 species and 152 reactions (Shah & Fox,
1999).

Industrial scale chlorination devices are often more than a meter in diameter and

> 10 meters in length with Reynolds numbers exceeding 106 at design operation. Three-

dimensional velocity fluctuations occur on length scales ranging in sizes equal to this

integral scale to a factor of Re °_5 smaller and on a correspondingly broad range of time
scales (dynamic range of Re°S). Relevant chemical time and length scales can be even
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FIGURE 2. Premixed (left) and nonpremixed (right) illustrating the structure of the mixing
and reaction front location from preheated and non-preheated feed streams.

broader. Fully resolved LES of such a commercial scale device still remains a considerable

computational challenge, and past computational efforts have been restricted to averaged

techniques.
Figure 1 compares computed mean temperature profiles for a typical prenfixed com-

mercial scale reactor with experimental data. Mean temperature ineasurements were

obtained using fixed thermocouples housed in thick thermowells. Due to both the unavail-

ability of optical access and the corrosive environment inside the reactor, measurements
on shorter time-scales are difficult to obtain. Axisymmetric calculations were performed

at 5 different, flow rates, which differ by a factor of 4 using a RANS code including

chemical reactions (to be described later) with 15 species and 21 reactions. The chem-

ical source terms in the species equations were evaluated with Favre-averaged values of

mass fraction and temperature, neglecting chemical source term closure. The reference

velocity is U_ = 9 m/s. The data (at the median flow rate) compare reasonably well with

the predictions. However, the somewhat limited data suggests a more gradual tempera-
ture rise across the reaction zone than the calculations predict. Shah & Fox (1999) did

computational studies using a more detailed mechanism and full PDF calculations in an
adiabatic, well-stirred device. By varying the mixing time, they show that the increase

in temperature is more gradual when the mixing time is longer.
The calculations of Fig. 1 also fail to predict observed sensitivities to variations in flow

rates. It is not possible to double (or half) the flow in this particular device without

causing undesirable effects such as unsteady pressure oscillations or extinction of the

reaction. Computational studies similar to that of Fig. 1, neglecting source term closure

and involving variation of other operating parameters such as inlet feed concentration,

also fail to predict observed sensitivities in the actual operation of the device.

In the present study we compute the turbulent reacting flow in a chlorination device

using detailed kinetics both with and without chemical source term closure, compare
differences in solutions, and evaluate the importance of closure.

1.2. Chlorination modeling difficulties

Feed streams can typically consist of chlorine, methane, M1, and M2 and can be intro-

duced either premixed or nonpremixed through a coaxial configuration with molecular

chlorine in one feed entrance and premixed organics in the other. In the present study

we investigate the preheated, nonpremixed case; in the future we will look at and report
on others. Here we provide a brief description of several inlet configurations to indicate

differences in features and reveal relevant modeling issues.

For the premixed case, reaction is initiated and sustained by the confined jet re-
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circulation as the coht incoming feed stream is heated (Fig. 2). As flow rates are increased

above the flame speed, the reaction front moves farther downstream. The introduction

of cold nonpremixed feed can result in a number of complex flame structures. If one of

the feed streams is sufficiently heated (typically CI2) , combustion and flame structure

follows that of typical nonpremixed flames. The flame is situated very close to the inlet

location, and stable operation is only weakly dependent on the autothermal, confined

.jet design. However, for cold, nonpremixed applications, flame position and structure are

highly depemtent on the mixing and heat entrainment processes and can be significantly

different depending on which inlet the chlorine is introduced (Raman et al., 2000).

Turbulent reacting flow in chlorination devices can be further complicated by the in-

troduction of liquid chlorine at the inlet (in addition to gas) as a means of increasing
chlorine inlet concentration. Thus future combustion modeling of these particular chlo-

rination devices require accounting for the effects of spray vaporization.

In this initial study we use a nonpremixed flamelet combustion model to study a pre-
heated, nonpremixed M1/M2 chlorination device. We will couple the combustion model

with both LES and Favre-averaged solutions for the flow, turbulence, and scalar mix-

ing. Model characteristics, solution details, and comparisons of computed results are
presented next.

2. Solution methodologies

The Favre-averaged Navier-Stokes, LES and Laminar Flamelet codes are briefly de-

scribed below, referring to available references when possible to conserve space. We use

conventional notation, a tilde denoting Favre averaging and an overbar for time-averaged

quantities. The ittt species partial pressure, density, mass fraction, molecular weight, and

enthalpy is pi, pi, )_i, I:Vi, and hi, and the thermodynanfic pressure, mixture density,

velocity components, and temperature are given by p, p, u, v, w, and T, respectiw_ly.
Vector quantities are in bold type, and the Favre mean mixture fraction and variance

are denoted Z and Z''_-'-_.Turbulent and laminar diffusivities are denoted by Dt and Dt
with constant Schmidt numbers assumed.

2.1. Reynolds-averaged Navier-Stokes

A structured, finite-volume, multi-block pressure based low Mach number preconditioned
Favre-averaged Navier-Stokes code for a mixture of chemically reacting gases is used. All

species are assumed to ()bey an equation of state: Pi = p,RT/I}_. The 3-D equations

for n-species partial pressures, momentum, and energy are solved simultaneously in a
standard generalized frame of reference. The appropriate vector equation is of the form:

A0_Q + 0{ (l_, - E_,) + 0,(F - _'v) + 0i((] - (_,,) =ILI (2.1)

Where (_ is the vector of primitive variables,/)i, u, _), ff_, and T. The preconditioning

matrix A is of a form sinfilar to Choi & Merkle (1993). The hats are used to rel)resent

inviscid and viscous flux vectors E, I_r, etc. in the generalized coordinate system and are
related to the flux vectors in the Cartesian frame by an expression of the form

1_ = l(_s_E + _uF + t%G) (2.2)

The mean convective fuxes are differenced using the low-diffusion flux-splitting s(:heme

of Edwards (1997). Flux vectors are linearized and resulting implicit Jacobians, 0G/00,
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are constructed using derivatives of the fluxes with respect to each of the primitive vari-

ables. The exact form of the fluxes and Jacobians can be found in Harvey & Edwards

(1998). I:I contains the chemical production rates per unit volume of each species, mi,

which, for calculations neglecting closure, we assume to be equivalent to rhi(fii,T). Clo-

sure of this term is introduced later. The thermodynamic pressure is computed as the sum

of partial pressures of each species. Mass fractions are computed from partial pressures,

and the enthalpy of each species is computed from

hi = h_l, + Cp, dT (2.3)
r

where h ° is the species enthalpy of formation at T -= T_ and the species specific heat,
f_

Cp_, is obtained using 4th order polynomials in temperature. The mixture-specific heat
is obtained by mass fraction weighting.

An arbitrary number of Arrhenius type reactions can be considered. For the present

work, the mechanism found in Shah & Fox (1999) is used.
A zonal two-layer k-e model is solved de-coupled from the flow. The eddy viscosity

is computed as C_,k2/_. The following transport equations are solved for mean mixture

fraction, Z, and variance, Z ''2

a2
p-_- + p_. vz = v. (Dt_72) (2.4)

N

oz
p---_ + ffi. VZ ''2 = V- (DtVZ '':) + 2pDt(V2) 2 - P_

where a gradient transport assumption for turbulent fluxes is used and the mean scalar

dissipation rate, _, appearing as a sink term in the equation for the mixture fraction

variance is calculated as:

= 2k_-_ (2.6)

The multi-block code employs a multi-level grid refining strategy using three grid levels

and is similar to a multigrid V-cycle. Each zone in the grid is solved sequentially using

an ILU solver. Additional details can be found in Harvey _z Edwards (1998).

2.2. Large eddy simulation

The 3-D cylindrical code of Pierce & Moin (1998b) is used for the LES calculations. An

equation similar to that above for the RANS is solved for the mixture fraction. As in

Pitsch _z Steiner (2000), the sub-grid scalar mixture fraction variance is expressed as

Z''_-'_= CzA21VZI 2 with the coefficient, Cz, determined using the dynamic procedure
of Pierce _: Moin (1998a). Further details of the LES solution techniques and modeling

scalar mixing and dissipation rate can be found in these references.

2.3. Flamelet combustion modeling

Laminar diffusion flamelet modeling (Peters, 1984; Peters, 2000) has been successfully

applied to nonpremixed methane combustion flames in both RANS (Pitsch et al., 1998)

and LES (Pitsch & Steiner 2000) frameworks. Following these references the unsteady

flamelet equations for the species mass fraction, Y_, and the temperature are written as
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OY_ x. 02yi
P_r - P20Z 2 ri_i = 0 (2.7)

OT X ( O2T 10CpOT_ 1 N

PN - \oz2 + cp oz oz ) + h -,k = 0 (2.8)
k=l

where rhi is the chemical production rate per unit volume of species i and the scalar

dissipation rate is X = 2DzVZ. VZ with the diffusion coefficient of the mixture fraction

denoted as Dz. In the so called Lagrangian flamelet model (LFM), flamelets are intro-

duced at the nozzle inlet and are allowed to convect downstream through the flow. An

expression which relates the axial position of the flamelet to Lagrangian flamelet time,
dr = (_l,_st)dx, is defined by

_0 x dxlT = (2.9)

where (_lZs,) is the resolved velocity component along the mixture fraction contour

surface corresponding to the stoichiometric value, Zst. For steady flamelet modeling, the
first term on the rhs of (2.7) and (2.8) is zero. Additional derivations and discussions on

laminar flamelet equation modeling can be found in Pitsch & Steiner (2000) and Peters
(2000).

Solution of Eqs. (2.7)-(2.9) yield the laminar flamelet structure of all scalar quantities

= I], T. Using an assumed _3-function pdf, /3(Z,x, t), whose shape is determined by

the local mean and variance of the mixture fraction, Favre-averaged (RANS) or resolved

values (LES) scalar quantities are obtained using

_Z 1_)i = ¢i(Z,x,t)P(Z,x,t)dZ (2.10)
=0

for all scalars quantities ¢i = Y/and T. Note that for RANS calculations,/5 denotes the
pdf for long time sampling, while for LES,/5 is the instantaneous pdf within the filter
volume.

The form of the laminar flamelet model described above is not strictly suited to ac-
count for regions of strong flow re-circulation and radial diffusion due to the lack of a full

description of spatial convection in the flamelet equations. However, for the preheated ap-

plication to be presented in the next section, the effects of re-circulation is minimized. Ap-
plication of an extended laminar flamelet concept which incorporates multi-dimensional
effects is the subject of a future study.

2.4. RANS/flamelet model coupling

Implementation of the steady laminar flamelet (SLF) model entails solving Eqs. (2.7)-
(2.10) for all scalar quantities at all possible values of the mean mixture fraction, 0 <

,_ _< 1, variance, 0 < Z''_-'-_< 0.25, and scalar dissipation rate, 0 _< _ _< _q, where _q

is the quenching scalar dissipation rate. A table is then constructed containing ¢i =

¢_(Z, Z"2,;_) for the scalars variables ¢ = p, T and the mixture molecular weight _;,,

(required in the RANS implicit Jacobian terms). The flow is solved with the reacting
RANS code using a single species equation with a variable molecular weight. At each
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iteration the scalar dissipation rate is obtained from current values of k and e, and zZ

and Z'''-'_ are obtained from Eqs. (2.4) and (2.5), and then reference to the flamelet table

is made to obtain new values of the scalar quantities/5, T, and W,_. The temperature

equation in the RANS code is deactivated, and energy conservation is left to the flamelet

code (Eq. 2.8).
In steady flamelet modeling the flamelet time does not appear in the equations, and

it is assumed that the scalars, ¢, everywhere in the domain have the same functional

dependence ¢i = ¢i(Z, Z'-_ _). Once the solution has converged, the mass fractions of

each species can be found from a similar flamelet table containing Yi = Y/(Z, Z"=, X)"

In the Lagrangian flamelet model (LFM), a different flamelet solution is obtained

at each axial plane in the computational grid. Computations incorporating unsteady
flamelets involve first obtaining a converged steady flamelet solution to the flow as de-

scribed above. The velocity of the stoichiometric surface, (gsIZ, t)(x), and conditional

mean scalar dissipation rate at each plane {_t,_st)(x) are computed in the RANS code.

Equations (2.7)-(2.10) are solved for all scalar quantities in all Z and Z"2-space, and an

unsteady flame table is constructed containing ¢i = ¢i(Z, Z''-'_, x) for ¢ =/5, T, and I'f-'>m.

This table is used by the RANS until the mixture field adjusts, at which time a new LFM

table is constructed. This whole process is repeated until convergence.

The main implementation difference between SLF and LFM is that _ in the SLF table

is replaced by the axial coordinate in the LFM table. Each axial coordinate is treated as

a separate flamelet with Lagrangian flamelet time given by Eq. (2.9) and with a unique

conditionally averaged scalar dissipation rate.

2.5. LES/flamelet model coupling

Coupling of the LES calculations and the flamelet model proceeds in much the same
manner as the coupling for the RANS. The major difference is in the way the conditional

averages, scalar dissipation rate, and mixture fraction variance are computed. Further
details can be found in Pitsch & Steiner (2000).

3. Results and discussion

A model nonpremixed chlorination flow is constructed by considering a confined coax-

ial jet configuration with inner pipe diameter, d (see Fig. 3). The use of subscripts p and
a will denote quantities in the inner pipe and annulus, respectively. Chlorine preheated

to Tp =800K is introduced through the inner jet and premixed M1 (YMt = 0.47) and

M2 (YM2 = 0.53) at Ta =323K is introduced through the annulus. The velocity ratio is
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Up/U. = 5, the total C12 mass fraction is 24%, and the bulk inner pipe velocity, Up, is
7.905 m/s (Rep = 11910). In all the RANS and LES calculations, fully developed turbu-
lent profiles were computed using an appropriately long coaxial pipe. LES calculations

were performed on a 130 × 50 × 24 grid. For the present RANS work, 2-D axisymmet-
tic calculations were carried out on a 6-zone grid with a total combined resolution of
225 × 129.

Computed centerline mean velocity and turbulent kinetic energy profiles are shown in

Fig. 4 for all calculations. Predictions of velocity decay rates are similar for both RANS

and LES. Mean velocity for the RANS calculations with flamelet combustion modeling
drop off faster near the inlet, primarily due to the delay in the rise of kinetic energy

near the entrance compared to the LES computations. LES predictions of kinetic energy

showed a spike at the centerline which could possibly be an artifact of the boundary



Modeling turbulent reacting methane thermochlorination flows 189

10 _

10-2

_- 10"_

10 .5

10 _

10.7

10"

, , , , I k _ i J i I_

10 20 30 40 50

x/d

LES/LFM; .... LES/SLF;

I

41

31

i ,

x/d

FIGURE 6. Centerline mean scalar dissipation rate (left) and mean temperature (right);
RANS/LFM; .... RANS/SLF; .... RANS/NC.

treatment and is currently being investigated further. The RANS computation neglecting

closure closely follows the LES predictions of centerline velocity. This is because the

temperature (shown later) is higher near the entrance than all other calculations, further

resulting in an increased velocity compared to the other RANS calculations and offsetting
the effect due to the lower kinetic energy levels seen in the LES.

Mean mixture fraction and mixture fraction variance are shown in Fig 5. Decay rates

of Z are similar for the LES and RANS calculations. Unlike the velocity, which falls off

quicker near the entrance for the RANS, the LES predicts a more rapid drop in ,_ at

the nonpremixed nozzle exit. Differences between predicted centerline decay rates and

overall levels of Z and Z"_-'_using the steady and unsteady flamelet model (SLF vs. LFM)

are small.

Computed scalar dissipation rate along the centerline is shown in Fig. 6. RANS pre-
dictions are much higher than the LES calculations. Both techniques, however, predict

similar decay rates that compare reasonably well with an C/x 4 scaling for an arbitrary

constant C (dotted line).

Centerline temperature profiles are shown on the right of Fig. 6. Peak temperatures are

highest and the temperature increase is steepest for the calculations neglecting closure.

The significantly higher temperature predicted by the RANS calculation neglecting clo-

sure can be partially attributed to the fact that this is the only calculation performed in

this study that takes into full account the effects of the flow re-circulation in the energy

equation. The Lagrangian flamelet model (LFM) predicts higher peak temperatures and
a faster temperature increase in the reaction zone than the steady flamelet model (SLF)

results. The differences in the flow and mixing results are negligible.

Figure 7 shows differences in the computed mean velocity fields for the LES calculations

(upper) and RANS (lower) coupled with the unsteady fiamelet model. Results compare

well; the largest discrepancies appear to be closest to the centerline.
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4. Conclusions

Issues associated with modeling gas phase reacting methane thermochlorination flows
in the petrochemical industry have been discussed. Commercial scale devices can be

very large, and accurate model development and application must ultimately take into

account both nonpremixed and premixed combustion physics with spray evaporation.

RANS modeling neglecting turbulence closure fails to predict finite-rate chemistry effects,
intermediate species formation, and localized reaction extinction.

A laminar diffusion flamelet combustion model was successfully coupled with a RANS

code and a CTR-developed LES code. The turbulent reacting flow in a preheated, non-

premixed methyl chloride thermochlorination device was computed. The largest differ-
ences between the RANS and LES computational results are in the predictions of the

turbulent kinetic energy and scalar mixing. LES predictions of turbulent kinetic energy
are significantly higher than the RANS calculations. Naturally one suspects the LES

methodology to fare better in this regard. The differences in the centerline kinetic energy
between the RANS and LES results are being examined further.

All calculations using the laminar flamelet closure predict lower peak temperatures in

the reaction zone than the fully coupled reacting RANS calculation-neglecting closure.

Use of the flamelet combustion model results in a more gradual increase in temperature
in the reaction zone and possibly indicates that inclusion of source term closure results

in a slower reaction rate compared to computations-neglecting closure. It could also be

possible that the steeper gradient in the calculations-neglecting closure results because

a higher maximum temperature must be reached at a comparable flame location.

Related ongoing work in support of this effort includes further investigations into

nonpremixed turbulent chlorination flows. This work includes using an extended flamelet

model which accounts for multi-directional diffusion effects between neighboring flamelets
as well as the solution of a G-equation coupled with a flamelet model for premixed

chlorination applications. These computational techniques should bring us closer to the

longer term goal of developing methods for predicting complex combustion phenomena

such as lifted flames, localized extinction, and re-ignition in thermochlorination devices.
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Toward a unified high-pressure drop model for

spray simulations

By J. C. Oefelein and S. K. Aggarwalt

This research focuses on the development of a unified drop vaporization model for use

in simulations of high-pressure spray combustion processes. Emphasis is placed oil the

analysis of supercritical and transcritical processes. These processes occur when a liquid

drop that is initially at a subcritical temperature is injected into a high-pressure gaseous
environment that exceeds the thermodynamic critical pressure of the interfacial mixture.

For this situation the gas-liquid interface undergoes what is commonly referred to as a

transcritical heating process. This process is dominated by thermodynamic nonidealities

and transport anomalies. Classical models derived using the quasi-steady approximation
fail in this limit because of the fundamental assumption that drop vaporization rates are

dominated by quasi-steady convective processes. In the transcritical limit, drop vapor-
ization rates are dominated by unsteady diffusion processes. These rate-limiting modes

represent two extremes. Here we investigate these extremes by presenting the results from
a series of direct numerical simulations. Emphasis is placed on the existence of two rate-

limiting parameters and on obtaining a unified approach for modeling the transitional
behavior of vaporizing drops over a range of pressures from atmospheric to supercritical.

1. Introduction

Transcritical drop vaporization occurs when the surface of a drop, initially at a subcrit-

ical temperature, reaches the critical mixing state (where both phases of the interfacial
mixture exist in equilibrium simultaneously) sometime during its lifetime. As a drop

evolves in a supercritical ambient, its temperature starts increasing due to heat transfer

from the ambient, and vaporization is initiated. Since the drop surface has the highest

liquid temperature, it attains the critical mixing state sometime during the drop lifetime.
As the the surface approaches the critical mixing state, both surface tension and enthalpy

of vaporization go to zero, solubility effects become important, and interfacial boundary

conditions change significantly. The subsequent drop regression process is qualitatively

different from that in the subcritical state.

A major difficulty in modeling transcritical vaporization stems from the fact that it

is governed by processes which are fundamentally different from those which occur at
subcritical or "low-pressure" conditions. As a consequence, the classical, quasi-steady,

low-pressure models (see for example Godsave (1953), Spalding (1953), Faeth (1977), Law

(1982), Faeth (1983), Sirignano (1983), Aggarwal, Tong _z Sirignano (1984), Faeth (1987))
can not be used to describe this transcritical behavior. The fundamental difficulty with

the classical models in the transcritical limit can be best illustrated by examining the

t University of Illinois at Chicago
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quasi-steady equation for vaporization:

d2 Pr, 1

rt,Lp -- 12 v, ln(1 -k BT,LP) (1.1)

where the thermal transfer number I_T, LP is given by

nr,Lp = Cp(T o - Ts)
ahv, (1.2)

Here d_ represents the drop diameter, Prs the Prandtl number defined at the drop surface,

and us the kinematic viscosity at the drop surface. The terms Cp and Ahv, in Eq. (1.2)

represent the constant pressure specific heat and enthalpy of vaporization, respectively.
The term T_ represents the ambient temperature, and Ts the drop surface temperature.

As the drop surface approaches the critical mixing state, Cp approaches infinity and Ah,_
approaches zero, making the transfer number go to infinity. This condition implies that

the vaporization rate becomes infinitely fast when in reality there is still a finite-rate
effect.

Other fundamental differences between classical low-pressure and high-pressure va-

porization phenomena include thermodynamic nonidealities and transport anomalies in

the vicinity of gas-liquid interfaces. Interracial mixture properties exhibit liquid-like den-

sities and gas-like diffusivities. Solubility effects, which are typically negligible at low
pressures, become essential considerations at high pressures. Treatment of interfacial

thermodynamics becomes significantly more complex and liquid mass transport in the

drop interior becomes important. The collective effect of these differences significantly
enhances transient effects and drop deformation processes, and the quasi-steady approx-

imation becomes invalid. A quantitative investigation of the quasi-steady assumption for

high-pressure conditions has been reported recently by Zhu, Reitz & Aggarwal (2001).
Several recent studies (Shuen, Yang & Hsiao (1992), Jia & Gogos (1993), Givler &

Abrahm (1996), Zhu & Aggarwal (2000), Yang (2000)) have focused on transcritical and

supercritical vaporization phenomena and have considered many of the high-pressure

effects outlined above. Comprehensive reviews of these investigations are provided by

Givler & Abrahm (1996) and Yang (2000). Generally, a transient, spherically-symmetric
model has been formulated to simulate gas- and liquid-phase processes associated with

a drop evaporating in an ambient whose pressure and temperature exceed the critical

values of the liquid. High-pressure effects such as gas-phase nonidealities, liquid-phase

solubility of gases, and liquid-vapor equilibrium have been represented using appropriate

cubic equations of state, or modified Benedict-Webb-Rubin equations of state, along with
consistent sets of mixing rules for multicomponent mixtures.

The current investigation focuses on drops that are initially in a subcritical state and

are introduced into a gaseous supercritical environment. For this set of conditions, drop

surface mixture properties undergo transient heating and mass exchange processes that

initially exhibit the classical low-pressure trends given by Eq. (1.1), then, after a period of
time, transition to highly transient diffusion dominated processes. This transition occurs

when the drop surface attains the critical mixing state. At this point, Eq. (1.1) fails and
transcritical vaporization processes dominate at finite-rates.

The objective of this research is to characterize both modes of vaporization and the
time-history effect associated with the transition process between these modes. We con-

sider n-hexane -nitrogen systems over the range of pressures, temperatures, and thermo-

dynamic regimes given in Fig. 1. The approach is based on previous work done by Zhu,
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FIGURE 1. Contours of density as a function of pressure and temperature for n-hexane. The
critical temperature and pressure is 508 K and 29.7 arm, respectively.

Reitz & Aggarwal (2001), Zhu & Aggarwal (2000), Yang (2000) and Oefelein (1997).

We focus on two distinct issues. The first is on the development of a general correlation

which is analogous to Eq. (1.1) and can be used to characterize vaporization rates above

over a range of ambient conditions from atmospheric to supercritical. The second is on

the development of a model which characterizes the associated transitional time-history

effects. The goal is to develop a model that is sufficiently simple so that it can be fea-

sibly applied in large-scale spray simulations in a manner analogous to the widely used

low-pressure models.

2. Theoretical-numerical framework

The analysis was conducted by performing a series of direct numerical simulations

(DNS) using two established theoretical-numerical frameworks, one developed by Oefelein

(1997), the other by Zhu & Aggarwal (2000). Both frameworks solve the fully-coupled
conservation equations of mass, momentum, total energy, and species for both the gas

and liquid phases and take full account of gas-liquid interface dynamics.
The framework developed by Oefelein (1997) uses an extended corresponding states

principle similar to that developed by Rowlinson & Watson (1969) to model thermophys-
ical mixture properties over the relevant range of pressures and temperatures. A 32-term
Benedict-Webb-Rubin (BWR) equation of state similar to that developed by Jacobsen

& Stewart (1973) is used to predict PVT behavior for real gas, liquid, or gas-liquid mix-

tures. Enthalpy, Gibbs energy, and the constant pressure specific heat are obtained as a

function of temperature and pressure using thermodynamic departure functions. Viscos-

ity and thermal conductivity are obtained in a similar manner using the methodologies
developed by Ely and Hanley Ely & Hanley (1981a), Ely & Hanley (1981b), Ely & Hanley

(1981c). The effective mass diffusion coefficients are calculated using two models. Gas

phase quantities, as dictated by phase equilibrium theory, are evaluated using the mixing
rules given by Bird, Stewart & Lightfoot (1960) coupled with Chapman-Enskog theory,
the Lennard-Jones intermolecular potential function Wilke & Lee (1955), and a high-

pressure correction proposed by Takahashi (1974). Liquid phase quantities are evaluated



196 J.

7O(

6O(

5oo

300

200
0

C. Oefelein _ S. K. Aggarwal

100 70 50 30

-_1o
_,-_ _ I I III

|111

I I I Jill
I I I IIII

I I I fill
.... i j _ , I , , , i , l l l llll

0.25 0.5 0.75 I
Mole Fraction of Hexane

FIGURE 2. Vapor-liquid phase equilibrium composition for an n-hexane-nitrogen system at
different pressures. Symbols: .... , liquid; --, vapor; o , critical mixing state.

using the mixing rules proposed by Perkins and Geankoplis Reid, Prausnitz &: Poling
(1987) and Hayduk & Minhas (1982).

The framework developed by Zhu & Aggarwal (2000) uses a similar property evaluation
scheme but with a Peng-Robinson (PR) equation of state to represent nonideal behavior.

This framework uses an arbitrary Lagrangian-Eulerian (ALE) numerical method which

allows a dynamically adaptive mesh to be used to analyze interracial time-history effects

as a function of various initial conditions. For this situation transport across the disconti-

nuity is balanced by the continuity of mass and energy fluxes and the condition of phase
equilibrium. The accuracy of this scheme and that described above has been demon-

strated in the works cited. Figure 1, for example, was obtained using the 32-term BWR

equation of state with the corresponding states principle. This methodology has been

shown to model the PVT behavior of liquid, vapor, and gaseous hydrocarbon mixtures

to factors well within 2% of measured values. It is particularly accurate in the difficult

region near the critical point. The PR equation of state exhibits similar accuracy but is

slightly less accurate in its ability to map liquid-gas saturation properties.

3. Results and discussion

The modeled system is an isolated liquid-hexane drop surrounded by nitrogen gas in a

spherically-symmetric domain. Calculations were performed by imposing two fundamen-

tally different initial conditions at the drop surface. One set of results were obtained using
the framework developed by Oefelein (1997) with the drop surface conditions initialized

to the critical mixing state. A second set of results were obtained using the framework

developed by Zhu & Aggarwal (2000) with the drop surface conditions initialized using
jump conditions balanced by continuity of mass and energy fluxes and the condition of

phase equilibrium. These initial conditions represent the limiting extremes. The former

yields vaporization rates which are dominated by transient transcritical diffusion pro-

cesses. The latter yields vaporization rates which are first dominated by quasi-steady
subcritical processes, then, after a period of time, become dominated by transient tran-
scritical diffusion processes.

Modeling drop vaporization processes hinges on an accurate representation of the gas-
liquid interface. At subcritical conditions, the interface is characterized by jump condi-

tions due to the presence of surface tension. When the critical mixing state is reached,
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however, the drop surface becomes indistinguishable from the gas phase and subsequent

drop regression is characterized by the motion of the critical surface. This surface is

characterized by assuming that the interracial mixture is in a state of thermodynamic

equilibrium. Figure 2 shows the calculated equilibrium composition for an n-hexane-

nitrogen system over the relevant range of pressures. The dashed lines represent the

liquid phase, the solid lines represent the vapor phase, and the symbols represent the

critical mixing state, which is the only point on the curve where both vapor and liquid

can exist in equilibrium simultaneously. The locus of points represent the critical mixing

state. These points are plotted in Fig. 3. The curve to the left of the critical pressure

gives n-hexane boiling temperatures as a function of pressure. The curve to the right gives

the critical mixing state as a function of pressure. In this limit, all other thermophysical

surface properties can be calculated as a function of these primitives.

Figure 4 shows the dual modes of vaporization that can occur when drop surface

conditions are initialized using jump conditions. Here the temporal variation of the di-



198 J. C Oefelein _4 S. K. A99arwal

104 4

E

_lO _ _" 2

107

lff8 O
0 0 10 20 30 40 50 60 70 80 90 100

Pressure. atm

(b)

FIGURE 5. Mean variation in kinematic viscosity v, thermal diffusivity c_ and mass diffusivity
Dq (a) and the corresponding Prandtl, Schmidt, and Lewis numbers (b) as a function of pressure
for an n-hexane-nitrogen system with initial liquid and ambient temperatures of 300 and 1500
K, respectively. Symbols: (a) o , v_; tJ, c_; A, Dq. (b) o , Pr_; t_, Sc,; A, Le_.

, I i _ , I J I _ I , I I , I , I , t

10 20 30 40 50 60 70 80 90 100
Pressure, atm

(a)

mensionless surface area and surface temperature is given for a range of pressures which

includes both the quasi-steady subcritical and the transient transcriticai vaporization

regimes. These histories have been validated with measurements reported by Nomura,
Ujiie, Rath, Sato & Kono (1996). The attainment of the critical mixing state is indicated

by respective symbols. Prior to reaching this state, drop vaporization rates are dominated

by quasi-steady convective processes that are characterized quite accurately by Eq. (1.1).
Upon reaching the critical mixing state, however, a distinct change in the vaporization

rate occurs and Eq. (1.1) is no longer valid. The time associated with this transition can
be significant.

3.1. Correlation for transcritical vaporization

Subcritical vaporization rates are well characterized by Eq. (1.1). This classic equation

implies that drops vaporize according to a d_p law and that the rate of vaporization for

a fixed diameter is inversely proportional to the product of the thermal diffusivity at
the surface and the term ln(1 + BT,LP), where BT, LP is the thermal transfer number

given by Eq. (1.2). BT, LP is directly proportional to the product of the constant pressure

specific heat and the temperature difference between the drop surface and ambient gas,

and inversely proportional to the enthalpy of vaporization. Figures 5 and 6 show how the

diffusion coefficients, enthalpy of vaporization, and surface tension vary as a function of
pressure for a representative n-hexane-nitrogen system.

Difficulties arise with Eq. (1.1) in the limit as the drop surface approaches the criti-

cal mixing state. In this limit drop surface properties (as characterized by the pressure,

temperature, and composition given in Fig. 3) become invariant with time and the drop
surface regression rate is determined by the rate at which the critical surface moves in-

ward. The diffusion coefficients remain well behaved, but the enthalpy of vaporization

(which dominates relative to the rise in Cp) becomes zero. This drives Eq. (1.2) toward in-

finity, and, as a consequence, Eq. (1.1) incorrectly predicts the occurrence of an infinitely
fast vaporization rate. In reality finite-rate effects are still prevalent.

Yang (2000) has identified two rate limiting parameters which can be used to quantify
finite-rate vaporization processes in the transcritical limit. The first is a correction due

to the spatial variation in thermal diffusivity which occurs between the ambient gas and
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FIGURE 6. Mean variation in enthalpy of vaporization Ahvp (a) and surface tension as (b) as a
function of pressure for an n-hexane-nitrogen system with initial liquid and ambient tempera-
tures of 300 and 1500 K, respectively.

drop. The second is a transfer number based on the critical mixing temperature:

To_ -Tom (3.1)
BT,HP = Tcm - Tp

where Too represents the ambient temperature, Tcm the critical mixing temperature, and

Tp the temperature of the drop. The utility of these parameters has been validated for
liquid-oxygen-hydrogen systems. The correction associated with the thermal diffusivity
characterizes the limiting behavior of transient diffusion processes at the critical surface.

Equation (3.1) characterizes the limiting behavior of energy exchange processes across

the drop surface.
To obtain a general correlation, an expression analogous to Eq. (1.1) was sought that

exhibited the correct limiting behavior over the interval 0 < BT < o_. This expression

was obtained by solving the transient heat conduction equation for a solid sphere initially

at a uniform temperature To in a quiescent ambient gas initially at a uniform temperature

Too. After solving for the reduced temperature (Too - T)/(To_ - To) as a function of time

and space, the resultant expression is integrated over the dimensionless time interval

0 < r* < rt* to obtain an expression for the dimensionless drop life time:

rt (3.2)
T; - _/_o

This solution is obtained in a manner consistent with the behavior of the critical inter-

face by assuming that the surface temperature is constant. For this set of conditions,
the reduced drop lifetime is only a function of the reduced interface temperature. This

expression is given as:

(Too - T_m)l(Too - To) = BT,HP/( 1 + BT,HP) (3.3)

and, as shown above in Eq. (3.3), is directly related to the high-pressure transfer number

defined by Eq. (3.1). The final solution is given by:

1 + BT,HP _ exp (3.4)
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TABLE 1. Curve fit coefficients corresponding to Eqs. (3.5) (and (3.6)) for the interval
O < BT < cX).

Set 1 Set 2 Set 3 Set 4
a0 1.00 x 10° 8.44 x 10 -1 5.37 x 10 -1 2.77 x 10 -1
al 1.94 x 10° 3.36 x 10 -1 3.07 x 10 -2 1.76 x 10 -3
32 1.12 x 101 1.78 x 10 -I 1.82 x 10 .3 1.08 x 10 .5
33 5.22 x 101 6.88 x 10 .2 7.37 x 10 .5 4.43 x 10 -s
34 1.63 x 102 1.81 x 10 .2 1.99 x 10 .6 1.20 x 10 -1°
a_ 3.35 x 102 3.21 x 10 .3 3.58 x 10 -s 2.18 x 10 -13
36 4.44 x 102 3.76 x 10 .4 4.23 x 10 -1° 2.58 x 10 -16
37 3.64 x 102 2.78 x 10 -5 3.14 x 10 -32 1.93 x 10 -19
38 1.68 x 102 1.17 X 10 -6 1.33 x 10 -t4 8.18 X 10 -23

39 3.35 x 101 2.15 x 10 -s 2.46 x 10 -17 1.51 x 10 -26

Set 1: 0< 1/ln(l+Br) < 1 1.718 x 10° <_BT <oo
Set 2: 1 _< 1/ln(1 + BT) <_ 10 1.052 x 10 .2 _< BT < 1.718 x 10°
Set 3: 10_< 1/ln(I+BT) <100 1.005x 10 -2_<BT< 1.052x 10 -I
Set 4: 100< 1/ln(I+BT) < 1000 O< BT < 1.005 x 10 .2

This equation establishes an analytic relation between the transfer number and the di-
mensionless drop lifetime.

The roots of Eq. (3.4) must be obtained numerically. After performing this operation
and analyzing various trends, a functional dependence of the form:

9

an

ln(1 + BT) Tt* = Z(--1)n [in(1 + BT)],I (3.5)
n:0

was obtained. The coefficients corresponding to this equation are given in Table 1. This

equation approaches 0 in the limit as BT --+ 0, and 1 in the limit as BT --_ oo. It is also

interesting to note that for a0 = 1 and an = 0 (n = 1-9), this equation reduces to the

same form as Eq. (1.1). These well bounded characteristics suggest a correlation of the
form:

_ d_p Prs 1 f (___'_ K-'9 anTI,tt P

12 u_ In(I + BT HP) \c_v] Z-'(-1)'_[ln(l+BT)]n
(3.6)

r_=0

where here the time constant in Eq. (3.2) was replaced with the ratio d2p/Cts (with c_
represented above using the definition of the Prandtl number) and a correction factor
of the form f(a,/c_p) was applied to account for the spatial variation in the thermal

diffusivity. This variation is not accounted for in the analytic approximation.

To validate Eq. (3.6) a set of 43 simulations were performed. The matrix of cases

considers pressures of 40, 50, 60, 70, 80, 90, and 100 atm with initial ambient temperatures
of 600, 900, 1200, 1500, 1800 and 2100 K. In all cases the initial drop temperature was

300 K. Dimensional analysis shows that the initial drop diameter is the only length scale

and that the drop lifetime is proportional to the diameter-squared. Thus only drops
with an initial diameter of 100 pm are considered in the present analysis. The resultant

drop lifetimes are plotted in Fig. 7a. To analyze the effectiveness of Eq. (3.6), the drop

lifetimes plotted in Fig. 7a were compared to respective predictions using a fitted value
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initial drop temperature is 300 K. Tile initial drop diameter is 100/_m. T_ = o , 600K; [], 900K;

A, 1200K; V, 1500K; t>, 1800K; <1, 2100K.

c_

z

20 115

,0/j 5

, I L I I , I i I , I , I , I , I , I

0 10 20 30 40 50 60 70 80 90 100
Pressure, atm

20115

z

5,

0
0 10 20 30 40 50 60 70 80 90 100

Pressure, atm

(a) (b)

FIGURE 8. Mean variation of transfer number based on the classical low-pressure definition given

by Eq. (1.2) (a) and the critical mixing temperature as given by Eq. (3.1) (b) as a function of

pressure. T_ = o , 600K; [], 900K; <> , 1200K; V, 1500K.

of f(as/ap) = 1.2. This comparison is plotted in Fig. 7b, which shows respective drop

vaporization rates given by the DNS compared with the corresponding rate given by

Eq. (3.6). A least-squares fit of these data indicate that the agreement is within a margin

of 5 percent.

3.2. Transitional behavior of the transfer number

Figure 8 shows the mean variation of transfer number based on the classical low-pressure

definition, as given by Eq. (1.2), and the critical mixing temperature, as given by Eq. (3.1).

The results exhibit several interesting trends. Fig. 8a shows that the low-pressure trans-

fer number is strongly dependent on both pressure and ambient temperature. At 1 atm,

this quantity is well behaved and varies from approximately 1.75 to 7.75 when the am-

bient gas temperature is varied from 600 to 1500 K. In the limit as pressure approaches

the critical pressure of n-hexane, the low-pressure transfer number goes to infinity since

the enthalpy of vaporization goes to zero. In contrast, the high-pressure transfer number
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FIGURE 9. Composite transfer number obtained by evaluating Eq. (3.7) using the data given
in Fig. 8. T¢¢ = o, 600K; [], 900K; o, 1200K; V, 1500K.

goes to infinity in the limit as pressure approaches zero, and it is well behaved as the

pressure approaches infinity. At pressures above critical, there is a strong sensitivity to

the ambient gas temperature but not to pressure. Here a variation from approximately
1 to 6 occurs when the ambient gas temperature is varied from 600 to 1500 K.

A last observation regarding Fig. 8 is that respective curves associated with the low and

high transfer numbers intersect at the same pressure (7 atm for the conditions considered

here). This implies that the transitional process from tile low- to high-pressure transfer
numbers is independent of both temperature and pressure and is only a function of the

critical mixing pressure. This suggests that the transition process can be handled by

using a transfer number defined as the minimum of the low-pressure and high-pressure
values:

BT = min(BT,LP, BT,HP) (3.7)

This equation incorporates transitional effects with the correct limiting behavior for

pressure approaching 0 and co. It also peaks at the correct value of 7 atm; however, this

may represent an overprediction. This detail will be addressed in future work. Figure 9

shows the composite transfer number corresponding the the results given in Fig. 8.

3.3. Transitional time-history effects

Equation (3.6) characterizes the transcritical mode of vaporization but not the time-

history effects described above. The trends shown in Fig. 4 illustrated this effect quite

clearly. For the cases shown, the drop never attains the critical mixing state at pressures

below 90 atm. At pressures above 90 atm, the drop undergoes transcritical vaporization
sometime during its lifetime. As pressure increases, this transition or the attainment of

the critical mixing state occurs progressively earlier in its lifetime. At 220 atm, the drop
attains the critical mixing state almost instantaneously.

The total drop lifetime, defined here as %, consists of 1) the time to reach the critical

mixing state _'c, which decreases with pressure, and 2) the time associated with transcrit-
ical regression, which also decreases with pressure. To characterize the effects of ambient

and drop properties on the attainment of the critical mixing state, we examine the ratio

of the time to attain the critical mixing state relative to the total drop lifetime. Figure 10

shows the variation of this ratio as a function of pressure for different ambient temper-

atures and initial drop diameters. As Vc/Tv goes to unity, the drop surface regression is

characterized completely by a subcritical vaporization process. As this ratio goes to zero,
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FIGURE 11. Minimum pressure required for an n-hexane drop to attain the critical mixing
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the surface regression process is characterized completely by transcritical vaporization

processes. This ratio decreases with pressure, which implies that Tc decreases faster than

r,. The time ratio parameter also decreases as the ambient temperature is increased and

as the initial drop diameter is decreased. Both of these effects can be attributed to an

inherent decrease in the drop heat-up time.

In Fig. ll, we plot the minimum pressure required for the attainment of critical mixing

state as a function of ambient temperature. In order to obtain a minimum pressure

value at a fixed ambient temperature, simulations were performed for increasingly higher

pressures until a critical mixing state is observed at the drop surface. Thus, the curve in

Fig. 11 represents a boundary between the subcritical and transcritical vaporization. Any

point above the curve indicates that the critical mixing state will be reached sometime

during the drop lifetime. The further a point is from the curve in the supercritical region,

the smaller the ratio rc/T_, which implies the drop attains the critical mixing state earlier

in its lifetime. On the other hand, any point below the curve corresponds to a condition of

subcritical vaporization where Tc/r, is one and the drop never attains the critical mixing

state. This relation is useful in identifying the subcritical and supercritical vaporization

regimes in a more quantitative manner. Another important observation from Fig. ll is
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that the minimum pressure required for the attainment of the critical mixing state is
independent of the initial drop diameter.

4. Conclusions

This work represents a first step toward the development of a unified high-pressure

drop model for spray simulations. The key trends have been quantified and a general

correlation has been developed and validated for n-hexane-nitrogen systems. Key trends

associated with the transfer number were also established over a relevant range of pres-
sures and were shown to be bounded in the transcritical limit. Issues associated with

surface heating and ambient conditions were also identified and analyzed.

To complete the model, this work must be extended to establish the quantitative

variation in transfer number for mixing states in the transitional region that occurs at

pressures between atmospheric and critical. The time-history associated with surface
heating must be incorporated with companion correlations to account for convective

effects in the ambient gas and subcritical and transeritical drop deformation processes.
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Simulation and modeling of the behavior of
conditional scalar moments in turbulent spray

combustion

By N. S. A. SmithT, C. M. Cha, H. Pitsch, AND J. C. Oefelein

A series of direct numerical simulations (DNS) have been conducted to examine the mix-

ing and reaction statistics of spray combustion in forced isotropic turbulence. Particular
attention has been given to statistics conditioned on mixture fraction to determine the

modifications required for mixture-fraction based gas-phase combustion models. The goal

is to apply these models in the presence of evaporating fuel droplets.

1. Introduction

Turbulent combustion in tile gas phase is a complex phenomenon which has been the

subject of a large body of research. However, even given an appropriate model for the
treatment of turbulent gas-phase combustion, there are additional important physical

processes which must be addressed if a practical predictive capability is to be derived.

A significant aspect of many combustion systems of practical interest is the presence
and behavior of liquid fuel droplets. The strong influence that this condensed-phase

species has upon practical combustion modeling is profound. Through the close interac-
tion with the surrounding gas phase, the droplets influence the location, structure, and

thermochemical yield of turbulent combustion zones within practical devices.

1.1. Mixture fraction in a multiphase system

When modeling turbulent nonpremixed combustion, it is common to employ a chenfi-

cally conserved scalar, usually referred to as mixture fraction, as a coordinate for the

computation of reactive scalar behavior. Examples of mixture fraction based models in-
clude the nonpremixed combustion versions of the steady and unsteady laminar fiamelet

methods of Peters (1984), Peters (1986) and coworkers, and the many variants of the

conditional moment closure (CMC) method proposed by Klimenko (1990), Bilger (1993)

and coworkers.

For pure gas-phase combustion, mixture fraction can be defined as an appropriate linear
combination of reactive (and inert) species mass fractions such that it has no chemical

source term. Since mixture fraction is defined as being conserved under chemical reaction,

it is solely a measure of the fraction of mass present that originated h'om one of the two

mixing streams. As such, its value is only subject to change due to mixing. This makes it
an effective coordinate in which to solve conditionally averaged reactive scalar equations

free from large nfixing-induced fluctuations.
For liquid tirol combustion, however, mixture fraction is an ambiguous concept, and

there are a number of alternatives for the definition. These alternatives result from 1) the

Aeronautical & Maritime Research Laboratory, DSTO, Australia
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question of whether to define it to be invariant under phase reaction or not, and 2) the
spatial scale at which the definition is applied. If a mixture fl'action ¢ is defined in terms

of tile gas-phase species alone on a spatial scale that is large compared to the mean free

path length of the gas molecules but small compared to the interdroplet spacing, then
its conservation equation is

O_ "_- _li oxi -- 037j _)0 , (1.1)

where ui denotes local velocity and D e the molecular diffusivity of the scalar. The bound-

ary condition at the irregular gas-liquid interface is given by

[pDo0 J ='_l(fsurf--fliq), (1.2)
s=_f

where 7i_is the mass evaporation rate at that surface, t_ is the surface nornlal coordinate,

and f_,,_/and fl_q are the values of mixture fraction at the surface and in the liquid-phase.

I,_limenko and Bilger (1998) provide plausible probability density flmctions (PDFs) and

scalar dissipation rate profiles for this mixture fraction. These are derived from scaling
arguments. Due to the overwhelnfing computational burden of resolving droplet surfaces
in a reacting turbulent sinmlation, it is not feasible to directly examine the dynamics of

O in this study. Here, analysis was limited to examining fiel(ts with scales of variation
which were commensurate with those of the turbulence sinmlations.

If a mixture fraction denoted as _ is defined in terms of the gas-phase species alone

on a spatial scale that is large compared to mean free path lengths of gaseous molecules

and interdroplet spacing so that it is a spatial average _ = {0} of that given above, then
its conservation equation is

0-[ + u, Ozi - Ozj 7)_ + ._ , (1.3)

where .q, is an ewtporative source term which represents the average flux of gaseous Inass

from the droplets, which exist on a spatial scale below the resolution of the equation.
At the spatial scale of the definition of _, it is, of course, possible to define a mixture

fi'action z which includes the mass associated with the droplets and the gas-phase alike,

z=(1-a)_c+a , (1.4)

where a is the mass fraction of the mixture which is associated with the liquid-phase. If

(t is assumed to be much smaller than unity, then z _ ( + a and the following is true,

0--[+ u, Ox, Ozj 7)_- + ._: , (1.5)

where the source term _+: is due to the strong differential diffusion between the different

componei_ts of z. Here an explicit evaporative term is avoided. Note that in the above, slip
velocities between the two phases have been a.ssumed to be negligible. This is consistent
with small "flow following" droplets.

One can pose the question as to which definition of nfixture fraction provides the most

convenient set of equations for use in the context of mixture fraction based nonpremixed
combustion models. Klimenko and Bilger (1998) adw)cate the simultaneous use of two

nfixture fractions _ and z in a doubly-conditioned CMC methodology, while R&_eillon

and \'_rvisch (1998) employed the ( mixture fraction in a study of unconditional mean
evaporation and mixing statistics.
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The level of resolution of the simulations conducted during the Summer Program

made it possible to examine the statistics for _ and z, but not those of b. Due to space

constraints, this report is limited to the analysis of _ mixture fraction and modeling based

on this quantity. Note however, that it seems to be possible to treat the differential
diffusion associated with sz in the z equation using the methodology of Smith, et al

(1998) and Smith (1999).

1.2. Conditionally averaged statistics

The form of the instantaneous local equation (Eq. 1.3) for the coarse scale gas-phase

mixture fraction ( can be used to derive the corresponding PDF transport equation,

OP,_ (9 02 0
c9---[-+ _xi ((ui I '1>P,) - &12 (N,,Po) - _ (@( I r;) P_) (1.6)

where P,7 is the mixture fraction PDF, and N, 1 denotes the conditional mean scalar

dissipation rate which is given by

N, _ ve ((v_)= I @ (1.7)

The shorthand (... [ TI) construction denotes the average of the argument taken over all

samples where the condition { = rl is met. It can be shown that for the conditional mean

mass fraction (Q, = (Y [ rj)) of any reactive species, the corresponding conditional mean

conservation equation can be written as

OQ, + (u, I _) OQ, N O:Q, OQ, (1.8)

where &r is the net chemical production rate of mass fraction for the reactive species.

It is clear from the equation above that the evaporative source term i_ plays a role in

a pseudo-convective process in mixture fraction space for both the PDF and conditional

monlent equations.
One of the principal aims of the study was to examine the shape and magnitude of

the conditional mean source term (_ I rl} as a function of mixture fraction for different

spray combustion cases. It was hoped that sufficient knowledge of (_{ ] r/) could be gained
from the simulation to devise an adequate model for the term from known quantities. It

was further hoped that this model would allow the above reactive scalar equation to be

solved in order to predict the conditional mean evolution of a smoke-like species in the

simulations.

2. Simulation conditions

Many different modes of spray combustion exist. Group combustion, where a diffusion
flame envelopes large groups of evaporating drops rather than individual droplets, is

the most common in gas turbine applications (Kuo (1986)). The DNS were designed to

embody the basic physical features of group combustion in the simplest possible flow and

mixing configuration.
The DNS involved the Lagrangian tracking of small inertial droplets in forced isotropic

incompressible turbulence on a 643 grid with a constant Taylor Reynolds number of -,_ 50.

In each simulation, the droplets were initially of uniform size and organized in a uniformly
random distribution within a spherical cloud with a diameter equal to half the edge

length of one cube of the periodic cubic domain. During the course of each simulation,
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the droplets were redistributed throughout the domain, as a result of turbulent fluid

motion, while evaporating to produce gaseous fuel in the turbulent fluid.

The droplets were defined to be sufficiently small so as to be in thermodynamic equi-
librium with their surroundings so that their individual evaporation rates could be de-
termined from

dm k Sk
d----i--= 7rPgasuga'Dk_-h In (1 + B k) (2.1)

_'c

where uga8 is the gas kinematic viscosity, D k is the droplet diameter, $_ is the droplet

Sherwood number, _'e is the Schmidt number of the evaporating species in the gas-phase,
and B k is the local instantaneous Spalding transfer number of the droplet. The Sherwood
number of the droplet can be approximated by

2+06 s /3) , (22)

where T_ is the droplet Reynolds number. The mass contributions from each of the

droplets were summed at each step in the simulation to determine the mixture fraction
source term _¢ which is required for the solution of Eq. 1.3.

The Spalding transfer number was set to vary linearly with temperature, with values
ranging between 3.4 and zero. The peak transfer number value was chosen to corre-

spond with kerosene droplets evaporating within enveloping flames. The corresponding

gas-phase stoichiometric mixture fraction (_8 = 0.0625) of kerosene was employed to
specify the location of the peak transfer number in mixture fraction space. To account

for individual droplets burning in fuel-lean regions, the transfer number B was set equal

to the maximum value for all lean local mixture fractions _ and was set to vary between
zero and the maximum only on the rich side of stoichiometric.

Combustion was simulated using a fast chemistry approach so that all properties of
the reacting mixture except the concentration of a minor pollutant were functions of the

local instantaneous gaseous mixture fraction (, which was in turn governed by Eq. 1.3.

The instantaneous local equation governing the evolution of the pollutant species mass
fraction Y can be written as

OY OY 0 (Dy OY
0---(+ u_ = \ ' (2.3)

where the &_ denotes the net chemical production rate, and Dy denotes the molecular

diffusivity, which in practice was set equal to the diffusivity of mixture fraction (Dy =

The purpose of including a non-equilibrium minor pollutant in each of the simulations

was to provide a reactive scalar against which CMC model predictions could be assessed.

The chemical behavior of the pollutant was defined so as to mimic soot in hydrocarbon
flames. It was set to be produced under hot fuel-rich conditions and eliminated under hot

fuel-lean conditions. The instantaneous local chemical production rate of the pollutant
was given by

Y

&_ = k,(_) - k2(_)_-_q, (2.4)

where Y_q is a constant that determines the approximate magnitude of the equilibrium
pollutant concentration. The terms kl and k2 are rate coefficient functions of mixture
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Case n_ rD Iv (z) /z_ rT a
2 1.e5 0.035 1.e-3 1.0 0.071 52100
4 1.e5 0.027 5.e-4 0.5 0.045 40200
5 1.e4 0.027 5.e-4 0.5 0.045 4020
6 1.e4 0.035 1.e-3 1.0 0.071 5210

TABLE 1. Characteristic parameters for spray combustion simulations. See text for symbol
definitions.

fraction defined by

k, for _s < _ < 5_s (2.5)kl (_) = O, otherwise

k, for 0 < _ < _ (2.6)k2(() - 0, otherwise

Here, k is an arbitrary rate constant with the value of the stoichiometric mixture fraction

set to the same value specified earlier. The value of the non-dimensional rate constant

k/Yeq was selected to be small compared to the Kolrnogorov timescale to ensure a tem-

porally well resolved chemical evolution of the pollutant in the simulation.
The transfer of conserved properties between Lagrangian droplets and Eulerian quan-

tities of the fluid phase was achieved using tri-linear interpolation in physical space with

a consistent summation method over cell volumes.

2.1. Parametric variation between cases

Four different simulations were conducted during the course of the Summer Program

to examine the effect of varying droplet size and overall fuel-air ratio on the mixing

and reaction behavior. The main features of these simulations are listed in Table 1. The

primary differences between the cases result from arbitrary variation in the initial number
of droplets nd and the ratio of initial droplet diameter to the Kolmogorov length scale

rD. Forced turbulent statistics were invariant for all cases.
The packing and interaction between droplets within the computational domain is of

increasing concern as the liquid volume fraction f_, increases. The simulations considered
here did not allow for droplet-droplet interaction. This linfitation restricted the maximum

allowable liquid volume fraction to the small values listed in Table 1.
The overall fuel mass fraction in tile domain was significant when considering the over-

all chemical stoichiometry of the computational system. This mass fraction was defined as

the fraction of mass in the entire domain (including outside the cluster) which originated

in the fuel droplets and is equivalent to the mean combined-phase mixture fraction (z)

(see Sec. 1.1). It can be seen from Table 1 that two of the simulated cases had an overall
fuel-air ratio corresponding to stoichiometric, while the other two cases correspond to

half the stoiehiometric value.
The ratio of the single droplet evaporative time scale to the Kolmogorov timescale rr

is indicative of the amount of spatial movement that can occur during the lifetime of a

fuel droplet. Large values of rT indicate that the droplet can evaporate over a protracted

trajectory of motion through the surrounding fluid. The evaporative timescale ratio r_
was determined using the evaporative rate equation (Eq. 2.1) and the stoichiometric

reference condition, from which the well-known D2-1aw of single droplet evaporation can

be recovered. Under that law, the square of the droplet diameter decreases linearly with
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FIGURE 1. Three instances from a typical temporal evolution of a combusting spray cluster on
a single slice through the domain over the course of a simulation in the periodic domain. Dots
denote droplet location while lines denote isothermal contours.

time. Thus the single drop lifetime is directly proportional to the square of the initial
droplet diameter when all other quantities are constant.

It is worth noting that the actual lifetime of the simulated droplet clusters exceeded
tile tabulated single droplet lifetimes to a degree which depended on the overall fuel-

air ratio, and they were at least an order of magnitude greater in each case. This was

because during group combustion, the efflux of fuel from other drops causes the conditions
surrounding any given drop to be cooler than if it were in isolation.

Chiu and coworkers (see Kuo (1986)) have defined a group combustion number G

which describes the ratio of droplet evaporation rate to the rate of mass transport from

the droplet cluster. High values of G (e.g., G > 102) are associated with droplet clusters

which are of such fuel type, droplet size, and spacing that allow for the evaporation

of droplets within a non-combusting envelope that surrounds a core of non-evaporating
droplets and is in turn surrounded at a standoff distance by the flame zone. Chiu calls

this regime external sheath combustion. At the other extreme of G (e.g., G < 10-2),
droplets evaporate at a slower rate so that each individual droplet is enveloped in flame
in the so-called single droplet combustion regime.

Following the definition of G, it is possible to simplify and nondimensionalize the

definition to give the proportionalities G oc ndrD c_ f_rD 2. This indicates that for a
fixed liquid volume fraction, the propensity for group combustion is proportional to the

inverse square of the droplet diameter. From the values of G computed for Table 1, it is

clear that all of the simulated cases fall well within the external sheath regime of group
combustion.

Figure 1 provides a depiction of the temporal evolution of a typical simulation on

a single slice through the domain at three instances over the course of two large-eddy

turnover times. It is apparent that the initial spherical form of the cluster is quickly

sheared into elongated shapes. Note that in the final (right-hand side) instance in the
figure, the periodicity of the simulation is apparent as material is re-advected into the
domain.
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FIGURE 2. Case 6: Solid line = p_(71), the two-parameter ({_},((')) presumed fl-function PDF
at times (normalized by the large-eddy turnover time) 0.3 and 2.0; • = DNS data.

3. Simulation results

All of the simulation cases were observed to share the common feature of a monotonic

increase in the global mean mixture fraction (_} from zero to a final steady value dic-

tated by the constant value of (z} in each case. The only additional significant difference
between the cases was the rate at which this steady value was approached, with the cases

with smaller initial droplet diameters having the shorter rise times. The droplets were,

in any case, essentially completely evaporated within two eddy turnover times (or about

ten Kolmogorov timescales) from tile initial condition.

This observed {_} behavior is consistent with the set of earlier unconditional statistical

behavior observed by R5veillon and Vervisch (1998). Other unconditional mean statistical

data such as mixture fraction variance <_,2), and so on, also followed the findings of this

earlier study. The observed behavior of ((_2) can be characterized as having an initial

brief rise period which results from interactions between fluctuations in the evaporated
field and the continuing evaporative process (see R_veillon and Vervisch 1988). This rise

is then followed by a monotonic decay in variance towards zero in a manner which is not

unlike the decay of scalar variance in a single-phase mixing system.
The remainder of this report will deal with the important conditional statistics of the

simulations which were not reported upon before and yet are critical to subsequent mod-

eling. For the sake of brevity, the following results and analysis is limited to simulation

Case 6, but the features discussed are evident in all cases.

Figure 2 depicts the evolution ot" the PDF of _ over the course of a simulation and

provides a _-function presumed form PDF for comparison. Its controlling parameters

(_},(_,2> have been taken directly from the DNS data. Typically, fl-function presumed
form PDFs are used extensively in mixture fraction based models to relate conditional and

unconditional statistical properties in various model operations. Good agreement between

actual mixture fraction PDF shapes and the presumed form is an implicit requirement

for the application of the majority of these models, one which is usually well satisfied in

single-phase systems.
Here, however, the fl-function representation of the PDF is a poor approximation in

the presence of a large mass of evaporating droplets. Note that in the final plot, the PDF
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FIGURE 3. Conditional mean scalar dissipation rate (Nn) as a function of mixture fraction

derived from DNS data at various times in the evolution of Case 6. Different symbols denote

different times (normalized by the large-eddy turnover time): • - 0.1, o - 0.2, + - 0.3, x - 0.7,
*-1.1

agrees closely with the/3-function since by that stage there is a total absence of droplets.

The incorporation of additional spray-related parameters into a new presumed-form PDF

is perhaps possible but was not attempted during the course of this study.

The related behavior of the conditional mean scalar dissipation rate N v can be seen in

Fig. 3. Unlike the case of mixture fraction in a single-phase system, it is evident from the

left-hand plot that there is an initial 'pumping up' of the N,_ profile before a monotonic

decay is manifested in the right-hand plot. Further, the shape of the profile at stages

where droplets are present is quite unlike that seen for purely passive scalar dissipation.

In mixture fraction based models for single-phase systems, Nn is required in order

to solve Eq. 1.8 and is determined from the evolution of the presumed-form PDF by

twice integrating the left-hand side of Eq. 1.6 between bounds (see Klimenko and Bilger

1998). The unusual behavior observed from these simulations renders this methodology

doubtful for spray combustion applications. For the moment, however, we will assume

that the statistics of _ can be suitably modeled and focus on feasibility of modeling the

combustion when in the presence of droplet evaporation.

4. Model predictions

In this section, we formulate and apply a variant CMC method to model the evolution

of the smoke-like pollutant species (see Sec. 2) in the simulated spray combustion.

4.1. Variant model equations

The primary feature of the variant method is a "floating" rich boundary condition, which

is treated through an advantageous change in conditioning variable,

_R' (4.1)

where _R(t) represents the rich boundary which changes in time due to the counteracting

effects of droplet evaporation and mixing. Pitsch (1998) has previously applied this type

of transformation in relation to flamelet modeling. The change of variables transform
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Eq. 1.8 to yield

OQ N_ 02Q ( _ d_R + (_l_)_ OQ (4.2)0-i- - 2 + d--i- -0-('

where N¢ corresponds to N,_ under the Eq. 4.1 transformation. The initial and lean-

boundary conditions for the conditional mean mass fraction of the pollutant are given

by

and t)=0,

respectively. To formulate the rich boundary condition, we draw upon results from an

analogous simplified problem.

4.2. Laminar single-droplet analogy

A boundary condition for Eq. 4.2 at ( = 1 (,_ = _R) can be found from consideration of a

single fuel droplet evaporating in still air. The governing spherically-symmetric, steady,
one-dimensional equations in the radial coordinate (r) for this system can be found in

Williams (1985). For all species besides fuel, the boundary condition at the drop surface

(r = rt) is,

(th Y - 47rrz pDdd-_ ) _=_, = 0. (4.3a)

Defining the scalar dissipation rate X - 27)(d_(r)/dr) 2 for this laminar case and trans-

forming Eq. 4.3a to the scalar _ space yields

( =0, (43b)rhr(_) - 47rpD ln(1 - ()') V 27) d_ ] ¢=¢R

where _(rt) - (n. Equation 4.3b applies to any choice of _ so long as its value is known
at the droplet interface. Both rh(_n) and X(_R) must also be known in this methodology,

but this is not especially difficult given that provisions must already have been made to

determine the remainder of these conditional mean profiles.

Equation 4.3b is used to extrapolate the rich boundary condition for Eq. 4.2. Here we

simply assume Eq. 4.3a is valid for the turbulent case and conditionally average Eq. 4.3b.

A further change of variables given by Eq. 4.1 will yield

((_[_)Q _ (sel¢): 1 , _/-_OQ_ = O. (4.4)47rp7) _n ln(1 - _n) 2 V -D--_-] _=,

This equation is to be enforced at the rich boundary of Eq. 4.2. Equation 4.4 assumes

quasi-steadiness since _n is a function of time.

4.3. Results and discussion

The effectiveness of the variant model embodied by Eq. 4.2 can be tested by comparing

predictions for conditional mean smoke mass fraction with the evolution observed from

the spray combustion simulations.
In this test, a priori information is required in the form of the observed N n and

(_ I_7) profiles from the DNS. These observed quantities are mapped to { space via
linear interpolation. The floating rich bound on mixture fraction (_n) is defined to be

that value where (k_ ] r/) is a maximum. It is noted that, as with the earlier findings of

R_veillon and Vervisch (1998), the profile of (_ [_7) was found to exhibit a monotonic

increase with mixture fraction at all times and in all cases. The time derivative of the
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FIGURE 4. Case 6: Solid line = a priori modeling solutions of (YIr/) from Eq. 4.2 at times

(normalized by the large-eddy turnover time) 0.3, 0.8, 1.5, and 2.0; • = DNS data.

value of the rich bound (d_n/dt) was calculated from a cubic spline fit to the resultant

DNS data for _n(t). Cubic splines were also used to interpolate the a priori N, and
(i_ Iq) data in time where temporally-local DNS data was not available in the time
record.

Predicted and observed conditional mean results for smoke formation in simulation

Case 6 (see Table l) are shown in Fig. 4. The CMC modeling predictions, which use a

priori mixing information, are clearly good estimates of the DNS experimental data for

all the times of interest. Although not plotted due to space restrictions, the respective
model predictions compare equally favorably for all of the other simulation cases. This

outcome is encouraging for future model development, which must necessarily focus on

finding submodels to obviate the need for the a priori information employed in this test.

In order to use Eq. 4.2 in an a posteriori role, additional models are required for
the interrelated quantities _R, (_ I r/), and N_. In theory, it is possible to solve reactive

conditional moment equations like Eqs. 1.8 and 4.2 for droplet mass fractions and number

densities and in so doing compute (i( I 7/) directly. The differential diffusion inherent in
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these equations could be treated in the manner of Smith (1998, 1999). The value of _R
and its time derivative would also then be available from the expression,

d_R- [_--_j 0 (N_P_) + (s4 Irl)]dt -_ n=4R

Further simplification may be possible if it eventuates that the PDF slope term on the

right-hand side of the above equation is zero as it is in single-phase mixing cases, so that,

d_, (4.5)
dt -[@_ 1'1)]'=4" '

Alternatively, a simple empirical model for (i(]_/) could be employed as was done

by R_veillon and Vervisch (1998) for a different purpose. For the DNS cases considered
here, a least-squares curve-fit of (64 I r_) _ TI_ (for rj C [0,(R]) reveals that (6( It/> is

approximately linear (n _ 1.1 averaged over time). Rfiveillon and Vervisch (1998) found
that n varied more widely according to the regime of spray combustion. This empiricism

is perhaps best avoided by using the conditional moment modeling approach for (64 I 7j)

in tandem with the chemically reactive scalars.

The need to provide accurate N_ data for the solution of the CMC equations is a

more difficult problem. This problem is made particularly onerous by the absence of an

easily parameterized form for the mixture fraction PDF. Rfiveillon and Vervisch (1998)

make use of the 9-function presumed form despite its poor agreement with mixture

fraction profiles in spray combustion as observed in this study (see Fig. 2). In fact, the

inapplicability of simple presumed form PDFs in spray combustion throws doubt on the
validity of their use of their one droplet model (ODM) (R_veillon and Vervisch, 1998).

It may be appropriate as a rough approximation to use the/_-function presumed form in

conjunction with the unconditional mean and variance equations for mixture fraction (as

described by R_veillon and Vervisch) for the single purpose of determining an estimate of

N,j. This would be done in the usual manner (Klimenko and Bilger 1998) via the double
integration of the left-hand side of Eq. 1.6. While this process would likely give reasonable

"bulk" magnitudes for the Nn profile, one should be aware that correct profile shapes
would not result and even negative N n profile sections may emerge from the process.

In the absence of an effective presumed form PDF, the only viable alternative is to em-

ploy a stochastic methodology for predicting the evolution of the mixture fraction in the
PDF and the CMC equations (Klimenko and Smith 2000). Such a method would involve

a significant shift away from traditional CMC and unsteady flamelet methodologies but

could prove fruitful even beyond the confines of spray combustion.

5. Final remarks

Direct numerical simulations of the group combustion of spray clusters in isotropic

turbulence have revealed some important previously unreported observations. Not unex-

pectedly, it has been found that when in the presence of evaporative sources, mixture
fractions defined in terms of gas-phase mass exhibit statistics which are quite distinct

from those of single-phase systems.
Perhaps most importantly, the shape and behavior of the mixture fraction PDF is

found to deviate significantly from the forms typically seen in pure gas-phase combustion.

This observation poses significant complications for the application of gas-phase mixture
fraction based combustion models in a liquid fuel environment. This finding calls into
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question models proposed at earlier Summer Programs which do not acknowledge these
deviations.

Using a priori mixing information from the simulations, a new variant of the condi-

tional moment closure and unsteady flamelet family of models was found to provide very

accurate predictions of the conditional mean chemical formation of a smoke-like pollutant
in the spray combustion systems studied.

Future work will focus on better understanding and parameterizing the gas-phase based

mixture fraction PDF forms in spray combustion through further and a more extensive

DNS program. This is the current stumbling block to the immediate application of the
widely successful mixture fraction based models to spray combustion.
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The turbulence modeling group

The papers in this section encompass Reynolds averaged modeling (RANS) and large
eddy simulation (LES). They are addressed to effects of rotation and stratification on

turt_ulence, to bypass transition to turbulence, and to numerics.

From a practical standpoint, RANS is the only method of turbulent flow prediction
that has found widespread use in engineering flows. One of the many roadblocks to use

of LES is the need for special purpose codes and intensive user involvement in preparing

and performing calculations. The report by Choi addresses the potential for industrial
CFD codes to be used for LES applications. In the long run, the objective is to make LES

a viable tool for engineering fluid dynamics. The aspect addressed here is the possibility

of using codes that have been developed for RANS purposes.
The RANS modeling papers (Ooi, et al. and Pettersson-Reif, et al.) are outgrowths of

earlier work here at Stanford. The mathematical approach grew out of papers of Speziale

and co-workers. The observation is that turbulence models respond to sufficiently strong

stabilizing forces through a bifurcation between solution branches. A model of rotation
effects that evolved out of such analysis is applied to several test cases in the article by

Ooi, et aL The article by Pettersson-Reif, et al. explores the potential to apply the same
ideas to stratified turbulence. In that case the bifurcation occurs as a function of the

gradient Richardson number.
The report by Ham, et al. is on the topic of bypass transition. Direct numerical simu-

lations done here at Stanford revealed a complex process by which this type of transition

occurs. The initial stages of transition involve large structures -- 'backward jets' -- that
are well within the large eddy domain. But the key instability process that ultimately

cause transition is a highly localized breakdown of these jets, which occurs in the upper

part of the boundary layer. It subsequently spawns a turbulent spot that penetrates to
the wall. There is some question of whether these later stages of transition can be cap-

tured by LES. The spots are quite intermittent; subgrid models that average over span
will include laminar and turbulent zones. That could reduce the fidelity of the simulation.

This project applied a new time-integration scheme, developed at Waterloo by Ham and

Lien, to the problem of transition simulation.

Paul Durbin
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Evaluation of an industrial CFD

applications

code for LES

By Dochul Choir, Dilip Prasadt, Meng Wang AND Charles Pierce

The feasibility of using an industrial compressible CFD code for large eddy simulations

(LES) is evaluated. Dynamic subgrid scale (SGS) models developed at CTR have been

implemented into the code and tested in a fully developed turbulent channel flow. In order
to evaluate tile effects of the SGS model compared with the numerical dissipation inherent

in the upwind-biases schemes, computations without any SGS model were also carried
out. It is found that the effect of dynamic SGS model decreases with increasing numerical

dissipation (low order schemes). The 9th and llth order schemes have relatively small
numerical dissipation, and thus the dynamic SGS model plays useful role. In addition,

a wall model was implemented in conjunction with LES. Although the velocity profile

obtained with the wall model agrees well with the full LES solution, the magnitude of

the pressure fluctuation is found to be overpredicted.

1. Introduction

There is an increasing demand for high fidelity, unsteady CFD capabilities for such

applications as turbulence and transition modeling, flow control, aero-acoustics, and
combustion system dynamics. Conventional Reynolds Averaged Navier Stokes (RANS)

solvers based on various turbulence models often fail to capture unsteady flow physics

accurately. This is not surprising in view of the fact that most of these models were

developed with the goal of solving steady flow problems. Alternative methods are needed

for unsteady CFD analyses in industrial applications.
As computer power becomes more affordable, Large Eddy Simulation (LES) has emerged

as a viable and powerful alternative tool in turbulence computations. In recent years, LES

has been applied to an increasing number of problems of engineering relevance. This was

made possible through the use of parallel computing over under-utilized distributed ma-
chines in an industry setting and the availability of relatively cheap processors. The

challenge in carrying out LES is that a three-dimensional, unsteady calculation must be

carried out on a grid capable of resolving the larger scales of the motion; for flow geome-
tries and Reynolds numbers of engineering interest, this implies that the grid is usually

large. Hence, the CPU time required is substantially larger than that for an analogous

RANS calculation.

The objective of the present study, carried out as part of the 2000 CTR Summer Pro-

gram, is to evaluate an industrial CFD code for LES applications. Dynamic subgrid scale

(SGS) models developed at CTR were implemented into the code, which was then tested

by application to a fully developed channel flow. A significant drawback of contemporary
LES methods is the need for a fine grid spacing in the neighborhood of the wall, which

leads to prohibitively expensive computations in realistic applications. We attempted to

t United Technologies Research Center, East Hartford, CT 06108
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address this issue in this investigation by using a wall model that relieves the grid re-
quirement in the wall region. It is shown that the results obtained by such a treatment
show a higher level of wall pressure spectrum.

2. Code description

Over the last few years, LES capability has been added to an existing Euler/RANS

code at United Technologies Research Center. This code, called UTNS (Upwind-biased
Time-dependent Navier-Stokes Solver), solves the compressible flow equations in conser-

vative form in generalized curvilinear coordinates. The momentum equations are solved

together with the continuity and energy equations in a fully coupled, vector form. Spatial
differencing is accomplished using finite volumes with upwind biasing. The order of accu-

racy of the scheme ranges from the first to the 11th order (upwinded) for the convection

terms and the second order central differencing for the diffusion terms. Furthermore,
there is also an option for second order central differencing for the convection terms

which eliminates numerical damping. Temporal advancement is achieved using second
order backward differencing with a dual time step, one for physical time step and the

other for numerical time step (used as an under relaxation parameter) for sub-iterations.
The sub-iteration is carried out using a scalar, implicit, approximate factorization scheme.

A third order Runge-Kutta explicit scheme is optional.

Tile original LES code, developed from the unsteady RANS code, has a simple Smagorin-
sky subgrid scale (SGS) model with the van Driest wall damping function. The code has

been applied to jet-in-cross flows, flows behind flame holders, flows in swirling com-
bustors, and transonic jet mixing. In all of the cases considered thus far, the flows are

dominated by large-scale unsteady structures, with relatively small contributions from

small scale eddies generated near solid boundaries (Madabhushi et al. 1997, Choi et al.
1999).

3. Dynamic subgrid scale model

Although the Smargorinsky model is widely used for LES, it has some limitations, the

most crucial one being that the model constant needs to be adjusted depending on the

flow. Moin et al. (1991) have developed a dynamic SGS model for compressible flows by

generalizing the model of Germano et al. (1991). This procedure uses two filters, a grid

filter and test filter (typically twice the grid filter width), to find the optimum model

constant as a function of time and position, using a least squares technique (minimiz-

ing the difference between the closure assumption and resolved stresses) (Lilly 1992).
In LES for compressible flows, density-weighted (Favre) filtering is typically employed.

Recently, Boersma &: Lele (1999) proposed a standard averaging technique without den-
sity weighting. This averaging results in the appearance of extra unknowns which are

modeled by a procedure similar to that used for the dynamic SGS model. One of the

advantages of this model is the emergence of an SGS mass flux term in the filtered conti-

nuity equation, which may help in controlling high wave number numerical instabilities.

Following Boersma & Lele (1999), the governing equations of mass, momentum, and
energy conservation may be cast into the form

O_ 07 _ _ 0
0---[+ Oxi Oxi (-fi-_ - p ui), (3.1)
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O_ij 0 _j)_ 0OF_, OF_ uj 0p + (_ - p u, _ (_0u_- f _), (3.2)
Ot + Oxj Oxi Oxj Oxi

-- 0 0 (_ E_++pui-pu,) (3.3)OE 0 (Egi +giP) Oqi + (g,_ij) -

where E = pT/"/+ puiui/2 is the total energy, the stress tensor _i+/ is defined by

_ [0_ 0W 20_u]_ij = _ [Oxj + Oxi 30xk

o_ The last terms on the right-hand side of the mass andand the heat flux qi -= -- "_'_"
momentum conservation equations are the additional terms arising from the standard

averaging rather than density weighted averaging. Both models have been implemented

into the UTNS-LES code.

4. Implications of upwinding

In order to examine the numerical characteristics of the upwind scheme, a test case was
formulated. It is based on the one-dimensional compressible Euler equations solved using

5th and 7th order upwind biased spatial differencing. The 2nd order central differencing
scheme is also used to provide a reference behavior. The calculation starts with random

fluctuations at every grid point and advances in time. 128 uniformly-spaced grid points

and periodic boundary conditions are used. Since there are no diffusion terms present,
the level of the fluctuation should remain the same as that of the initial perturbations.

Figure 1 shows the kinetic energy spectra as a function of wave number. The results
obtained from the central differencing scheme without any artificial damping show that

the level remains the same as the initial values. On the other hand, the results obtained

from the upwinding scheme show that the energy at high wave numbers is damped. All
the curves shown in Fig. 1 are obtained at the 500th time step, which correspond to 16

acoustic time units based on the domain length and the sound speed of the initial state.
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Since the resolved stresses of motion between the test scale and grid scale are used to
determine the model constant for the dynamic SGS model, the high wave number solution

needs to be computed accurately. Note that most of the dynamic SGS applications at
CTR are based on the central differencing scheme for incompressible flow. This scheme

is energy conserving and hence free of numerical dissipation. For compressible flows, we

cannot identify an energy conserving scheme. Therefore, a new method of estimating the

model constant, perhaps by using information at lower wavenumber, may be required.
Further research on the dynamic SGS model for an upwind type of scheme is needed to
generalize the model for application to industrial CFD codes.

5. Fully developed channel flow

As a test case, we considered a fully developed channel flow with a Reynolds number

of 180 based on friction velocity and channel half-width. The problem was solved us-

ing 32 grid points in the streamwise and spanwise directions and 64 grid points in the

wall-normal direction, covering a domain of 4rrH x 34-7rHx 2H, where H is the channel
half-width. The cell sizes in the flow and spanwise directions are 72 and 24 wall units

respectively, while in the shear (wall-normal) direction, they vary from 1 to 13. The phys-
ical time step was 50 in wall units. The calculated results are compared with the result

obtained using a CTR-developed LES code for incompressible flow using the same grid.

In order to use the periodic boundary conditions in the streamwise direction, two extra

source terms are added to the axial momentum equation: (1) the difference between a

target flow rate and integrated computed flow rate, and (2) a total drag force. The purpose

of this is to fix the Reynolds number and to eliminate any streamwise pressure gradient.

Note that once the solutions reach a statistically steady state, the first forcing term
vanishes. The LES calculation starts with a fully developed laminar profile with random

number fluctuations of up to 10% the initial velocity. Since the basis for comparison is
the incompressible solution, the Mach number in the compressible case was set to a value

less than 0.2. Favre-averaged version of the dynamic SGS model was used for the test

calculation with high-order upwinding schemes (Wake and Choi 1995). Figure 2 shows

the mean axial velocity profiles obtained using the 5th, 7th, and 9th order upwinding
schemes. Two calculations, one with the dynamic SGS model and the other without

any SGS model, were made with each scheme. The aim was to evaluate the effect of the

dynamic SGS model in the presence of numerical dissipation. With the 5th order scheme,
there is little difference between two calculations. As the order of the scheme is increased

and numerical dissipation decreases, the difference between two solutions increases. The

dynamic SGS model seems to be overwhelmed by the numerical dissipation of the low-
order schemes. When a scheme of llth order is used, comparison with the CTR-LES code

result, shown in Fig. 3, is observed to be very good; the case without any SGS model
shows more mixing in the log region as expected. The profiles of Reynolds shear stress

are compared in Fig. 4, where the SGS model used in the llth order scheme is shown to
improve the solution.

Attempts were made to use central differencing without artificial damping but were

unsuccessful owing to numerical instability caused by odd-even decoupling. For the cen-

tral difference case, the standard LES filtered equations of Boersma & Lele (1999) were

used as well, but the), also failed to produce a statistically steady solution. Note that,
using the central differencing without damping, we also considered two-dimensional cal-

culations starting from the similar initial condition as used for the LES and found that
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FIGURE 3. Mean velocity profiles obtained using llth order upwinding scheme compared with

solution obtained from CTR-LES code (o). Solid line represents computations with SGS model;

dashed line represents those without any SGS model.

the solution reached the steady state and, therefore, became a laminar solution. Thus the

presence of three-dimensionality appears to have caused the solution to become unstable.

6. LES with wall model

In order to use LES in practical engineering problems, the stringent grid resolution

requirement for high Reynolds number flows in the near wall region needs to be relieved.

Wang (1999) reported a factor of 10 reduction in CPU time in an LES for a trailing-
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edge flow using an approximate wall boundary treatment proposed by Cabot and Moin

(2000) for incompressible flow. This simple wall model was expanded to the compressible

flow equations. The model equations are based on boundary layer approximation of the

two tangential direction momentum equations. Modifying the formulation described by
Wang (1999) for compressible flow, these equations are integrated from the wall to the
first off-wall cell (at a distance 6) according to:

0 Oui

Ox2 (# + #t) _ = Fi, (6.1)
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from which the wall shear stress, r_,i is determined to be

The turbulent eddy viscosity #t is modeled by

#t =_pu,d,_ 1-exp _ )] ,

(6.2)

(6.3a)

where dn is the distance to the wall, _ = 0.4 is the von Karman constant, and A = 19.

The forcing term must, in general, be determined according to

O(puiuj) (6.35)Op O(pu_) +
Fi = _ + 0-----_ Oxj

here we use the somewhat crude approximation, Fi = 0, the so-called "stress-balance

model". The calculated wall shear, wwi, is then used as a boundary condition for the

momentum equations in LES. Figure 5 shows the velocity profile compared to the result
obtained from a full LES calculation. With tile wall model, the number of grid points

in the shear direction is reduced to 32 from 64 while the number of grid points in other

directions is kept the same. Note that the actual saving in a real application of LES

with wall model will come from reductions in axial and spanwise grid points as well.

The profiles agree well with each other. In Fig. 6, tile frequency spectra of wall pressure
fluctuation from the two calculations are examined. We observe that the simulation

employing the wall model overpredicts the magnitude of the pressure fluctuation, and
this is similar to the behavior reported by Wang (1999); evidently, further study is needed

to improve this approximate formulation.
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7. Summary

The feasibility of using an industrial compressible CFD code, UTNS, for LES has been

evaluated. This was done using a CTR-developed dynamic SGS model in a simple fully
developed turbulent channel flow at a Reynolds number of 180, based on the friction

velocity and channel half width. In order to evaluate the effect of the SGS model in the

presence of numerical dissipation due to upwinding, a computation without any SGS

model was also carried out. Calculations were carried out using upwind-biased schemes

of up to the llth order, and the velocity profiles obtained were compared with those
computed using a CTR central differencing LES code. The dynamic SGS model is found

to have little effect when there is a large amount of numerical dissipation as in the
case of the 5th order scheme. We have found in this study that the 9th and 11th order

schemes have relatively small numerical dissipation so that the dynamic SGS model plays

a significant role. In order to improve cost effectiveness of LES for practical applications,

a RANS type wall model was also implemented. Although the velocity profile obtained

using LES in conjunction with the wall model agrees well with the one obtained using the

full LES calculation, the magnitude of the pressure fluctuation was found to be higher.
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Evaluation of RANS models for rotating flows

By A. Ooi_, B. A. Petterson Reif_, G. Iaccarino AND P. A. Durbin

Two- and three-dimensional simulations of the flow in rotating rib-roughened ducts are

carried out using several turbulence closures. One and two-equation models have been

used together with the four-equation v 2 - f model. In addition, a modification of this
model that systematically accounts for system rotation has been used. Results show that

the v 2 - f model is superior to the others in predicting wall heat transfer and, for the

rotating case, the modified model accurately accounts for the effect of the system frame

rotation.

1. Introduction

The two-equation k-_ model (Launder (1974)) with the semi-empirical "wall function"

approach for modeling near wall turbulence is the most widely used turbulence closure in
the industrial CFD community. There are many situations in which this approach fails,
such as turbulent boundary layers at low and transitional Reynolds numbers and flows

with massive separation. A variety of alternative models to account for wall effects in such

situations have been introduced in the last decade (Chen & Patel (1998), Patel, Rodi _z

Scheuerer (1985)). Many of these models incorporate ad-hoc "damping functions" which

have been adjusted to fit experimental or computational data. An alternative approach

was taken by Durbin (1991) and Durbin (1993); the standard k - _ formulation was
extended using the elliptic relaxation methodology in order to account for nonlocal wall

effects. This model (v 2 -f) has been used by Behnia, Parneix, Shabany & Durbin (1999),

Ooi, Iaccarino & Behnia (1998), Kalitzin (1998), Parneix & Durbin (1997), and Durbin

(1995) to accurately predict heat transfer and velocity profiles for various turbulent flows
that are of interest to the engineering community.

Even though it has been proven to be successful in many different situations, the

v 2 - f model has also inherited some of the many problems associated with the standard
k - e model. In particular, the k - e model (as with all single point closures) is unable

to properly describe turbulent flows with body force effects arising from system rotation
unless ad hoc adjustments are made to the turbulence dissipation rate (Gastki & Speziale

(1993)). To partly rectify this problem, Pettersson, Durbin & Ooi (1999) proposed an
extension to the original linear v 2 - f model that takes into account the turbulence

generated by system rotation. This model has been successfully applied to "simple"
flows such as the fully developed rotating channel, duct, and the two-dimensional rotating

backstep flow by Pettersson, Durbin & Ooi (1999). An improvement to this linear model
has since been proposed by Pettersson (2000), who introduced a nonlinear extension that

provides a fundamentally more accurate description of the flow physics than the linear
formulation of Pettersson, Durbin &: Ooi (1999). Even though these models have been

developed from rigorous mathematics and understanding of the basic flow mechanisms,

t University of Melbourne, Australia
1: Norwegian Defence Research Establishment, Norway
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they have not yet been tested in a complex three-dimensional rotating flow environment,
and tile improvements over the original v 2- f model for practical engineering applications
are still to be fully addressed.

2. Turbulence models

The formulation of the two-layer k - _, Spalart-Allmaras (SA), and standard v 2 - f

models has been published in many papers (see for example, Chen& Patel (1998) for the

two-layer k-_ model, Spalart & Allmaras (1992) for the SA model, and Behnia, Parneix,
Shabany & Durbin (1999) for the v 2 - f model) and will not be repeated here. In the

modified v 2 - f model proposed by Pettersson, Durbin & Ooi (1999), the C u constant
in the expression for eddy viscosity is a direct function of the mean strain and rotation
rate tensors. The eddy viscosity is given by

liT : pC_v2T

where T is the turbulence time scale (Durbin (1993)) and C_ is given by

(2.1)

(i1C;--C. 1+ _2l_al +_zrl3 +as_l +alv_ (2.2)
1 + 041_]3 ] -}- a5_] 2

In the original v 2 - f model, C_ = C u and has a constant value of 0.22. All the ai's in
Eq. (2.2) are model constants given by

(al,a2,aa,a4,as)= 0.055, 2' 4' 5' " (2.3)

The qi's are defined from the non-dimensional mean strain and rotation rate tensors

ql = Si*kSi*k, (2.4)

(2.5)
and

where
q3 =_a - _2 (2.6)

and

(2.7)

Wik = -_T \'_xk Ox i + 4"5ekimam • (2.8)

This modification to the expression for C u was obtained so that the v 2 - f model "mim-

ics" the behavior of second moment closure models in the equilibrium limit of rotating

homogeneous shear flow. Additional details of this derivation can be found in Pettersson,
Durbin & Ooi (1999).
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3. Test cases, mathematical model, and numerical simulations

Test cases from the 7th ERCOFTAC/IAHR Workshop on Refined Turbulence Mod-

eling were chosen to investigate the performance of various turbulence models. Owing

to the simplicity of the geometry, fully developed rotating chamml flow was chosen as
an ideal initial test case. Data from direct numerical simulation (DNS) of the Navier-

Stokes equations are available from Kristoffersen (1993) at Re,- = huT/u = 194 and

Ro = 212h/Ub = 0.1 to check the accuracy of the simulations. Since tile flow is assumed

to be fully developed, periodic inflow and outflow boundary conditions were used in the

calculations.
The second test case considered here is the turbulent flow in a square duct (width

to height ratio of 1:1) with ribs. In the experiment, ribs are placed in a staggered ar-

rangement on tile side walls of the duct. This is illustrated in Fig. 1, which shows a side
view of the experimental configuration; pitch to rib height (p/h) for the configuration

used is 10 while rig height to duct height (h/D) is 0.1. Tile experimental measurements
were taken as part of a study on the flow and heat transfer in rotating square-sectioned

U-bends with rib roughened walls. The velocity field six diameters downstream of the

bend exit were measured using LDA. The flow is fully developed in this straight section

and unaffected by the prescnce of the bend. Hence, in the numerical simulations, only

one portion of the duct is considered with periodic inflow/outflow boundary conditions.

In the experimental facility, data from turbulent flow at. rotations numbers Ro = 9ID/Urn
of 0 and 0.2 with Reynolds number based on bulk velocity Ub and duct height D of 105

were obtained. Both flow and heat transfer data were obtained at Ro = 0.0, but only

velocity field data were available at Ro = 0.2. Measurements were only taken on the

symmetry plane of the duct.
The two-dimensional (2d) grid used in the calculations is shown in Fig. 2. It has 40,000

quadrilateral cells, and fine grid spacing was used in the vicinity of the walls to ensure the
simulations are well resolved. The 2d simulations were carried out because the authors

initially assumed that the presence of the side walls has a limited effect on the predictions

at the symmetry plane where experimental data were available. Three-dimensional (ad)
simulations carried out later showed that this assumption was incorrect; secondary flow

structures have a dramatic effect on the predicted streamwise velocity at the center of

the duct. The 3d simulations are performed using a grid that is just a spanwise extension

of the 2d grid; it consist of 800,000 hexahedra cells.
Simulations were carried out using various turbulence models. As there is separation
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in the flow, it is expected that all turbulence models based on "wall functions" will not
be able to accurately reproduce the experimental data. Hence, only turbulence models

that can be integrated all the way to the wall such as two-layer k - e (proposed by Chen

& Patel (1998)), Spalart Allmaras (Spalart & Allmaras (1992)), v 2 - f (Durbin (1991)),
and the linear modified v 2 - f (Pettersson, Durbin & Ooi (1999)) were tested.

4. Results

4.1. 1-d rotating channel flow

Figure 3 shows the results from the rotating channel simulations with Ro = 0.1. System
rotation suppresses turbulence on one (stable) side of the channel which leads to asym-

metry in the mean velocity profile. This is evident in the DNS data. As is well known,
conventional eddy viscosity type closures such as the k - e, SA, and the original v 2 - f

models are relatively insensitive to system rotation and will predict a mean velocity pro-

file that is very close to symmetric. The slight asymmetry in the SA prediction is due to

the production term of the modified eddy viscosity transport equation. The production
term is modeled as _j_2ij whereas the production term in the k - e model is just SijS_j.

Predictions using the modified linear v 2 - f model accurately matche the DNS data.

4.2. 2d rib simulations

Figure 4 shows the flow pattern obtained with the modified v 2 - ] turbulence model for
both the non-rotating and rotating cases. The mean flow goes from left to right, and a

small separation bubble appears upstream of the rib. Downstream of the rib, another

bigger separation bubble is formed. The size of the separation bubble is indicated in

Fig. 5, which shows the distribution of friction coefficient C! at the top of the duct

directly downstream from the rib. The data in this figure was obtained using the modified

v 2 - f model, and it shows that the predicted size of the separation bubble is smaller

for higher values of Ro. This is consistent with the experimental observation of Rothe
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(1975). In contrast, all other turbulence models tested predicted a separation length that
is independent of Ro.

For the case with Ro = 0, a quantitative comparison of the streamwise velocity (U)

with experimental data is shown in Fig. 6. This figure shows the predicted streamwise

velocity with the corresponding experimental data at two streamwise locations, one sta-

tion at the center of the upstream rib (X/D = 0.25) and the other one at the center of

the downstream rib (X/D = 0.75). For both streamwise stations, all predictions using

different turbulence models agree very well with the experimental data close to the center
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of the channel. However, the predicted velocity profiles between the different turbulence

models are actually very different close to the walls. This is more clearly illustrated in

Fig. 7, which compares the predicted Nusselt, Nu, with the experimental data along
the bottom wall of the square duct. The Nu is overpredicted by the k - e model and is
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underpredicted using the SA model. Predictions using the original v 2 - f model match
experimental values very well.

Numerically predicted data for the case with Ro = 0.2 is shown in Fig. 8, which
compares the data obtained using the modified and the original v 2 - f model at the

same streamwise stations. The modified v 2 - f model changes the streamwise velocity
profile such that it is a closer match to the experimental data. This indicates that the

modified model more accurately models the physics of rotating flows. Unfortunately, no
experimental data for Nu is available for this case. Hence, the accuracy of the modified
model in predicting Nu for the rotating case is unclear.

4.3. 3d rib simulations

Figure 9 shows a comparison between the 2d and 3d Spalart-Allmaras model results for

the case with no rotation. The Nu prediction at the bottom of the duct is similar for

both the 2d and 3d cases. However, the predicted value of the streamwise velocity is
remarkably different at the center of the duct. Surprisingly, the 2d prediction matches
the experimental data better than the 3d prediction.

The reason for this could be due to the existence of the secondary flow structures in

the 3d predictions. This is illustrated in Fig. 10, which shows the streamlines on two

streamwise planes in the computational domain. The two planes are chosen to be just
after the top rib at X/D = 0.35 and at X/D = 0.50, which is closer to the center of
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SA

the separation bubble. It is clear that the secondary flow structures persist downstream,
and mean streamwise vortices are formed in the separation bubble at Y/D > 0.9. Data

obtained from v 2 - f predictions show similar features.

Figure 11 shows how the 3d predictions of the velocity on the symmetry plane compares
with experimental data. As discussed previously, the SA model overpredicts the velocity
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on the centerline. On the other hand, the modified v 2 - f model is able to correctly
reproduce the velocity profile on the symmetry plane.

5. Conclusions

This paper presents results from steady-state RANS simulations of rotating and non
rotating flow in a square duct. Various different turbulence models were used and, when-

ever possible, comparisons were made with experimental data. For 2d calculations, it was
shown that the velocity field was well predicted with all turbulence models. For the non-

rotating case, both the two-layer k - e and Spalart-Allmaras models give heat transfer

predictions that are very different from the experimental data. Both variations of the

v 2 - f models tested give very good heat transfer distribution, indicating the superior

near-wall modeling using the elliptic relaxation methodology. For the 2d rotating case,
the modified v 2 - f model gives a velocity profile that is closer to the experimental values
than the original v _ - f model.

Three-dimensional simulations were also carried out and the differences between the

2d and 3d results were reported. For the non-rotating case, the predicted velocity profile
from the 2d calculations using the SA model were actually closer to the velocity profile

measured in the experiments. This is especially evident at the center of the square duct.
One possible explanation is that the secondary flow structures which exist in the 3d

calculations are very complicated and not properly modeled by the SA model. On the

other hand, 3d calculations using the modified v 2 - f model produce a velocity profile
that matches the experimental values.
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On stably stratified homogeneous
subjected to rotation

shear flows

By B. A. Pettersson Reif_, A. Ooi_ AND P. A. Durbin

Theoretical aspects of modeling stratified turbulent flows subjected to rotation are con-

sidered. The structural equilibrium behavior of second-moment closure (SMC) models is

explored, guided by bifurcation analysis. It is shown that the ability of the models to pre-
dict a critical gradient Richardson number in the absence of system rotation Ri_ _ ,-_ 0.25

is largely dependent on the model for the pressure-strain correlation tensor. It is also
found that the most commonly used linear models are ill-posed when the combined ef-

fect of system rotation and stratification is imposed; the models do not exhibit a steady

state solution.

1. Introduction

The combined effect of body forces associated with density stratification, system rota-

tion, and streamline curvature is important in a wide variety of turbulent flows. These

body forces exert profound effects on the vertical mixing in, for instance, geophysical

boundary layers as well as in engineering applications such as turbomachinery flows.

The importance is manifested through the direct effects on the turbulence fluctuations;
the turbulence can be suppressed (stabilized) or enhanced (destabilized). For instance,

the stabilizing effect associated with the flow over a convex surface leads to significantly

reduced skin friction.
The most physically appealing approach to account for body force effects within the

framework of RANS modeling is full second-moment closures (SMC). The main reason

is that body force effects are accounted for in a systematic manner. The more frequently

adopted eddy-viscosity type closures such as the standard k-_ model are not particularly
well suited for these situations. It is, therefore, unfortunate that the more elaborate SMC

models are not very often employed in practice for complex fluid flow predictions mainly

because of numerical stiffness problems.

Analysis of homogeneous shear ftow provides theoretical insight on the stabilizing and
destabilizing effects of imposed system rotation, flow curvature, or density stratifica-
tion on the turbulent stresses. This is particularly valuable from a turbulence modeler's

perspective since it also provides a mean for systematic approximations of SMC closures.

Equilibrium and bifurcation analysis have emerged as simple and powerful guides to
closure model formulations. Analytical solutions of SMCs provide a methodology for a

systematic derivation of simpler eddy-viscosity models that retain some of the predictive

capabilities of the more elaborate SMC models, in particular, the ability to respond

to imposed body forces. Although homogeneous shear flow is superficially simple, it has

t Norwegian Defence Research Establishment, Norway
1: University of Melbourne, Australia
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U(y)
x

FIGURE 1. Schematic of flow configuration.

proven to be a useful reference point - including for models intended to compute complex
flows far from equilibrium.

The present study examines the response of full SMC models in stratified homoge-

neous shear flow subjected to orthogonal mode rotation, see Fig. 1. The analysis is based

on structural equilibrium, and the behavior of these models is elucidated by bifurcation
analysis. In contrast to the modeling of passive scalars, density stratification mathe-
matically couples the equations governing the Reynolds stresses and the turbulent heat

fluxes; this significantly adds to the complexity of modeling stratified turbulence. The

motivation of this study is two-fold: first, to provide some theoretical guidance to clo-

sure formulations, in particular for turbulent heat flux modeling, and second, to serve as

guidance for improved eddy-viscosity formulations. Equilibrium and bifurcation analyses

have successfully been used to incorporate rotational effects in eddy-viscosity models in
Pettersson Reif, Durbin & Ooi (1999).

The theoretical analysis is based on the general linear models for the Reynolds stresses

and turbulent heat fluxes. However, only numerical results obtained with the most widely
used model, the IP model, is presented here, but the generality of the approach sets the

stage for analyzing all existing linear (or quasi-linear) SMC models. Similar analyses

of the Mellor-Yamada SMC have previously been performed, cf. e.g. Hassid & Galperin

(1994), Baumert & Peters (2000) and Kantha, Rosati & Galperin (2000). Mellor-Yamada,
which also is a subset of the general linear formulation, has received much attention in

the geophysical fluid dynamics community, but it has rarely been used in engineering
fluid flow predictions; the reason is mainly due to the highly simplified pressure-strain
correlation model.

2. Equilibrium and bifurcation analysis

Structural equilibrium of the Reynolds stresses is defined by constant values of the
anisotropy tensor dtb 0 = dt(u--7_/k) = 0 and of the turbulent to mean flow time-scale

ratio dt ($k/:) = 0 where $ is the mean shear dU/dy. True structural equilibrium requires
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also that dt(Sijk/e) = 0 = dt(f_Ak/e) where

l(O j ou, 
S_j = -_ \ Ox_ + Oxj )
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(2.1)

and

1 (OUj OU, _ (2.2)

are the mean rate of strain and absolute mean vorticity tensors, respectively. 12kF is the

angular velocity of the reference frame about the xk axis. It should be noted that k and
e themselves are not in general constants at equilibrium. However, the evolution of the

kinematic Reynolds stresses _ is the same as k; this is the reason why dtbij = O.

Similarly, the evolution of the turbulent and mean flow time scales are also identical but

not necessarily dt(k/e) = 0 =dtS.

Equilibrium of the turbulent fluxes is defined by dtKij = 0 and dt(OiO) = --cgiUkOkO
where K is the dispersion tensor and O is the mean temperature. The dispersion tensor

relates the turbulent fluxes to the mean temperature field;

k 2 0® (2.3)
uiO = -Kij-

e Oxj

For equilibrium to be attained, the mean temperature gradient is allowed to evolve as

d_(OjO) = -Oy_&O.

2.1. General linear models

Under the assumption of homogeneity and local isotropy, the transport of the kinematic

Reynolds stress tensor in a noninertial frame of reference is governed by

2 (2.4)
dtu--7_ = 7)ij + "R.ij + Gij - _c(_ij +¢ij

where

7=',j= - (u--_okgj + u--_okg_)

Gij = -fl (giujO + gj-_iO) .

are the rate of production due to mean shear, system rotation, and buoyancy, respec-

tively. The last term, which associated with buoyancy production, is responsible for the
intercoupling between the turbulent stress and heat flux fields. The most general linear

model for the pressure-strain correlation tensor ¢ij can be written as

2 S
¢_j/k = -C_b,ie/k + 4/5S_3 + (C2 + Ca) (b_kSkj + bjkSk_ - g(fi_b,_,_ rim)

1(_

The corresponding equations for the turbulent kinetic energy and the dissipation rate

are

dt k = "P - e

(G_P - G2e)dte= -_
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lp
where T' = 5( kk + 9kk). The evolution of the Reynolds stress anisotropy tensor, bij =

uiuf/k- 2/35ij, and the turbulent to mean flow time-scale ratio can then be written as

dtb_j = -_S_j + bijc/k (1 - C1 - W/e)

+ (C2 + C3 - 1) (b,kSkj + bjkSki -   ,jbm Snr )

+ (C2- C 3 -1)(bik_-_k A +bjk_kAi)

+ (i - c_) (O,j/k - _6,jO/k) - a # (b,,_j_t+ b_,_,k,).
and

where 7 = St.

Under homogeneous conditions, the transport of turbulent heat flux is governed by

dtuiO = Pio + Gio + OiO (2.6)

where

Pie = -u_u-yOj0 - uj---gO_U,

Fie = -13giO 2

are the production terms. The corresponding general linear 'pressure-strain' model for
turbulent fluxes can be written as

¢,_ = -C_e/ku,O + (C2c + C3_)ukOSk_+ (C2_ - C3_)_,0f_A_+ C4_u-SWyOj6)

+C5c_gi 02 .

The last term in (2.7) depends on the a priori unknown temperature variance _. A

simple model equation for the temperature variance is adopted:

dtO 2 = --2ukOOkO -- C_ _02. (2.7)

The coefficient Cn denotes the ratio between the heat flux time-scale _/e0 and the
mechanical time-scale k/e. Cn is for simplicity assumed to be constant; the alternative

would be to solve a transport equation for the heat flux dissipation rate e0.

The equation governing the evolution of the dispersion tensor K, defined in (2.3), can
then be written as

OjOdtKij =

OjOKije/k[P/e(C_l - 2)+ 2- C_2] + KijOkO (S_k + FtCk)

+ (1 - C4c) _e/k2OkO

- (1 - C2¢ - C3c) KkjSki -- (1 -- C2c + C3c) Kkj_k iA

+ (1 -- C5_) 13giO2e/k 2 -- Clce/kKijOjO.

The task is now to solve (2.5) - (2.5) and (2.7) - (2.8) for homogeneous shear flow sub-

jected to orthogonal mode rotation, i.e. U = [U(y), 0, 0], _F = [0, 0, ftF], g = [0,--9, 0]

and O = O(y), see Fig. 1. The equilibrium solution of this set of equations depends
on two parameters: f_v/s and Ri o. The gradient Richardson number is defined as

Rig = _g2OyO/S 2. Recall that ,9 = dU/dy.
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The model coefficients for the IP model are

C1 C2 C3 C4 C¢I Ce2

1.8 3/5 0.0 0.5 1.5 1.8

whereas the following coefficients in the turbulent flux equation are used

C_ C2c C3c C4_ Cn

1.8 2.5 0.0 0.45 1.4

The value C4 = 0.5 is the computationally optimized value suggested by Gibson £:

Launder (1978).

2.2. Bifurcation of equilibria

Equation (2.5) has two solutions for d_(c/$k) = 0: (i) P/e = (Ce2 - 1)/(CE1 - 1) and

(ii) limt_cce/$k = 0. These solution branches, in the three-dimensional phase space

s/$k- Ri 9 -12 F/S, are referred to as the nontrivial and trivial branch, respectively. The
solution on the nontrivial branch is thus g/Sk = Fcn(f_F/S, Rig) and ?/E = const. It is

associated with the exponential solution k oc e_t where a o¢ c/Sk depends on the model.

On the trivial branch, e/Sk = 0, and PIe = Fcn(f_F/$,Rig) depends on the model.

This branch is associated with an algebraic solution k c( tx where A c( "P/e - 1. So as

bifurcation occurs, i.e. when e/$k = 0, the exponential evolution of k is replaced by an

algebraic. But more importantly, the argument of the algebraic solution becomes negative
at certain values of _F/,_q and Rig, i.e 5°/e < 1. Hence, the evolution of k changes from

an algebraic growth to an algebraic decay beyond the so-called point of stabilization (or

neutral point): P/c = 1. The turbulence is thus stabilized by the imposed body force. It

is this particular feature of SMC models that make them superior to traditionally k -
models. A more comprehensive description of bifurcation analysis can be found in Durbin

& Pettersson Reif (1999).
The response of a particular closure model to an imposed body force can be neatly
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FIGURE 3. Evolution of turbulent kinetic energy in different regimes in tile _F/s and Rig space,

see Fig. 2. A: -- ; B: ........ ; C: .... . The turbulent kinetic energy has been normalized
with its initial value.
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FIGURE 4. Turbulent Prandtl number as a function of gradient Richardson number (_F/s = 0).
The shaded region corresponds to the data reported by Rohr, Itsweire, Helland & Van Atta

(1988). The lines are IP preditions; _ : C4 = 0.1; .... : C4 = 0.5. The turbulent Prandtl

number is normalized with its value at Rig -- O.

summarized in a bifurcation diagram, i.e. a plot that shows e/Sk versus Rig and _F/8.

Another issue related to the equilibrium solution of the model equations is whether it
is stable or not. Stability in this context should not be confused with stabilization of

turbulence; it relates to a characteristic of the solution to the governing model equations.

Several solutions e/$k might exist for the same pair Rig and f_F/$, but there should
only be one physically realistic stable solution in order for the model formulation to make
sense.
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3. Results

There is experimental evidence that the critical mean gradient Richardson number

Ri_ _ _ 0.25 (_F/$ = 0); fully turbulent conditions cease to exist as Rig is increased

beyond Rig _. It has also been well established that homogeneous shear flow relaminarizes

due to an imposed system rotation outside the range -0.1 < _F/S < 0.5. In contrast to

pure stratification, there exist two critical rotation numbers. SMC models tend to predict,

in agreement with linear stability analysis, maximum growth rate of turbulent kinetic
energy at _F/S ,_ 0.25 (Rig = 0); as the rotation rate is increased from _F/S = 0 to

DF/S =--0.25, the turbulence is destabilized, i.e. the turbulent time scale k/c decreases.
In a stably stratified environment, the magnitude of the critical gradient Richardson

number is, therefore, expected to increase for positive DF/S up to some point where it

again is reduced. On the other hand, for negative and sufficiently high positive rotation

rates, IRi_l is expected to be reduced.
Figure 2 shows the bifurcation and stabilization lines for the IP model. The predictions

partly confirm the above conjecture; the magnitude of the critical Richardson number
is increased as the rotation is increased. It should be noted that the constant C4 = 0.1

has been used instead of the original value 0.5 suggested by Gibson & Launder (1978)

in order to predict Rig _ ,_ 0.25 at f_F/S = O. The critical gradient Richardson number

corresponds to the stabilization line in the figure. If C4 = 0.5 is used, the model predicts

Ri_ _ _ 0.8, which is inconsistent with laboratory observations. The accompanying results
in Fig. 3 show the evolution of turbulent kinetic energy in the different regions of the
bifurcation diagram; it exhibits an algebraic or exponential behavior depending on the

values of the imposed parameters.
The turbulent Prandtl number PrT = Rigb12/K22 = Rig/Rif depends on the predic-

tions at a given Ri 9. Figure 4 displays the turbulent Prandtl number as a function of

gradient Richardson number. Two different IP predictions are included in the figure to
illustrate the dependence of the model constant C4. Rohr, Itsweire, Helland & Van Atta

(1988) argued that the PrT not is strongly dependent on Rig as long as IRigl < IRiCg_l•
This behavior is reproduced by the IP model if the value C4 = 0.1 is used.

4. Concluding remarks

It has been demonstrated that the model coefficient C4 is crucial in terms of the ability

to predict RiCg_ _ 0.25 at zero rotation; the commonly used value C4 = 0.4 should be

replaced by C4 _ 0.1. The experimentally observed variation of the turbulent Prandtl
number with the gradient Richardson number can then also be reproduced by the model.

It has only been possible to map the bifurcation diagram in the 12F/S-Ri 9 phase space
within a limited range of rotation rates (Ri 9 _ 0), see Fig. 2. This behavior seems closely

related to the particular set of model coefficients that is used. However, all commonly

known linear and quasi-linear SMCs have been tested, and all of them seem to be 'ill-

posed'. It is also interesting to note that under certain conditions the solution of an SMC
takes the form of relaxed oscillations; no numerically stable steady state solution could

be found for a given set of _F/S - Rig.
It has been demonstrated that the stabilizing effect of stratification can be properly

accounted for in a non-rotating frame of reference. The fact that all existing linear models

seem ill-posed as system rotation is imposed is a bit worrying. Rtrther work is definitely
needed in order to resolve this problem, which probably also is of concern when computing
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complex flows relevant in engineering or geophysics. The added complexity of the model

equations that results from an imposed density stratification makes this task a challenge.
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LES and unsteady RANS of boundary-layer

transition induced by periodically passing wakes

By F.E. HamJ, F. S. Lient, X. Wu, M. Wang, AND P. Durbin

Results from 3-dimensional large-eddy simulation (LES) and 2-dimensional unsteady

Reynolds-averaged Navier-Stokes (RANS) simulation of a spatially-evolving flat-plate

boundary-layer undergoing transition induced by periodically passing wakes are presented

and compared. The LES simulations used a novel kinetic-energy conserving finite-volume
discretization of the incompressible Navier-Stokes equations and the standard dynamic

Smagorinsky subgrid-scale model. RANS simulations were based on the STREAM code
of Lien & Leschziner (1994) with the v 2 - f turbulence model of Lien & Durbin (1996).

When compared to the direct numerical simulation (DNS) of Wu et al. (1999), the

LES was able to correctly predict the onset of transition. Inspection of the instantaneous

flow field in the transition region confirmed that intermittent turbulent spots were being

distinctly resolved. A close inspection of the fluctuating velocities near the top of the

boundary layer just prior to spot formation confirmed the presence of the "backward

jet" inflectional velocity profile proposed by Wu et al. (1999) and Jacobs & Durbin

(2000) as the precursor to turbulent spot formation, suggesting that the LES is actually

capturing the bypass transition mechanism, at least in these initial stages. The transition

length predicted by LES, however, was consistently shorter than the DNS result.
The unsteady RANS simulations were also able to correctly predict the onset of tran-

sition, in this case by the mechanism of turbulent diffusion from the turbulence kinetic

energy of the passing wake into the boundary layer. The transition length predicted by
RANS is also in agreement with the DNS; however, the overshoot of average skin friction

relative to the fiat plate correlation (seen in both the DNS and present LES) was not

observed.

1. Introduction

In orderly transition to turbulence, small disturbances in the laminar boundary layer
lead to 2-dimensional Tollmien-Schlichting waves that are amplified through various

stages leading eventually to a fully turbulent boundary layer. This relatively slow tran-

sition process has been extensively studied in relation to flow over aircraft wings, where
the free-stream turbulence levels are generally low (Mayle 1991).

In the presence of disturbances external to the boundary layer, however, it is observed

experimentally that transition can occur rapidly, "bypassing" the orderly route. Bypass
transition is the dominant mode of transition in many turbomachinery applications,

where free-stream turbulence intensities are usually well above the threshold level of

about 0.5% (Yang et al. 1994). Furthermore, when the dominant free-stream disturbances

are periodic in time, such as the periodically passing wakes generated by an upstream
row of rotors or stators in a turbine cascade, the transition can also become periodic. In

t University of Waterloo, Waterloo, Ontario, Canada
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FIGURE 1. a) Schematic of rotor-stator wake interaction; b) layout in the experiments of Liu
and Rodi (1991); c) layout in the DNS of Wu et al. (1999), and the present LES and RANS.

this case, the transition is referred to as "wake-induced" (Mayle 1991) but still fits under
the broader classification of bypass transition (Fig. la).

In an effort to remove some of the geometric and physical complexity associated with

the turbine cascade, Liu and Rodi (1991) experimentally investigated the wake-induced

transition of a flat-plate boundary layer (Fig. lb). In their experiments, periodic wakes

were generated by a series of cylinders mounted on a rotating squirrel cage upstream of

the flat plate. In the absence of the periodic wakes, the relatively low Reynolds number

and low free-stream turbulence intensity of 0.3% resulted in a laminar boundary layer
over the full length of the test plate. With the wakes, they found that transition first

occurred in isolated stripes underneath the disturbed free-stream. The stripes traveled

downstream and grew together to eventually form a fully turbulent boundary layer. They
also found that the streamwise location of this merger moved upstream with increased
wake-passing frequency.

The recent DNS of Wu et al. (1999) was designed following the experiment of Liu and

Rodi (1991) and provided new insights into the mechanisms of bypass transition through
a detailed analysis of the calculated flow fields (Fig. lc). Wu et al. found that the tran-
sition to turbulence first occurred in isolated spots, which broaden and convect down-

stream, where they eventually merged with the fully turbulent boundary layer. Analysis

of the instantaneous flow field identified long backward jets contained in the fluctuating
streamwise velocity field as precursors to turbulent spot formation. They proposed that
tile backward jets, located near the top of the boundary layer, were associated with a

Kelvin-Helmholtz-like inflectional instability that interacts with the free-stream eddies,

eventually leading to turbulent spot formation. More recent simulations of bypass tran-
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sition under free-stream turbulence (Jacobs and Durbin 2000) also identified backward

jets as consistent precursors to turbulent spot formation.
At 52 million and 71 million grid points respectively, the aforementioned transition

simulations are some of the largest and most finely resolved ever reported. Interestingly,

the bypass transition mechanism they uncovered - the backward jet - is actually a rela-

tively large structure, spanning 100's of wall units in the streamwise direction and about
60 wall units in the spanwise direction. This suggests that a coarser and significantly less

expensive LES might be able to capture the bypass transition mechanism.

Yang et al. (1994) used LES to study bypass transition of a flat plate boundary layer

subject to 5% freestream turbulence intensity. These simulations used the Smagorinsky

subgrid scale model modified in an ad hoc manner to prevent excessive dissipation in
the laminar portion of the boundary layer. They reported good agreement with available

experimental data such as the average skin friction coefficient and shape factor, but did
not report the resolution of turbulent spots or their precursors. In a more recent LES

of natural transition, Huai et al. (1997) used the dynamic procedure of Germano et

al. (1991) to avoid these ad hoc modifications. They reported that a localized version

(Piomelli and Liu 1995) of the dynamic model gave accurate results both in a statistical
sense and in terms of predicting the dynamics of the energy-carrying eddies.

In the present contribution, LES is used to study the wake-induced transition of a flat-

plate boundary layer with specific emphasis on the resolution of turbulent spots and their

precursors. As a complementary effort, the same problem is simulated using 2-dimensional

unsteady RANS. These two results, along with the DNS of Wu et al. (1999), represent

a truly integrated analysis of this transitional flow and provide a unique opportunity to
assess the relative benefits and drawbacks of the various simulation technologies.

2. Governing equations

The tensor equations of motion for the spatially filtered incompressible velocity and

pressure fields are given by

o ( o ,hh (2.1)OUi OUjUi Op "b (1] "b b_s9 s) "b

Ot + Oxj Ox_ _ \ Ox, Oxj ] ]

0_--! = 0 (2.2)
OXi

where the overbar represents spatial filtering on the scale of the grid. Equation (2.1)

assumes Boussinesq dynamics to approximate the subgrid stresses, where the subgrid

viscosity, u89s, is given by the Smagorinsky closure

usg_ -- C/_ 2_/jSij. (2.3)

In equation (2.3), the resolved strain rate tensor is defined

1 (Ofij 0_,_ (2.4)

and the grid filter width is defined in terms of the local grid spacing

z, = (/,_5,z,_) 1/3 . (2.5)
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The Smagorinsky constant, C, is calculated using the dynamic procedure of Germano

et al. (1991) and Lilly (1992) with averaging in the homogeneous direction(s) to avoid

the nmnerical instability associated with large negative C values. In addition, the total
viscosity (u + u_8) is not allowed to be negative.

3. Numerical method

The important role of discrete conservation of mass, momentum, and kinetic energy in

obtaining accurate solutions to incompressible turbulent flow problems has been argued

by several authors (Morinishi et al. 1998, Mittal & Moin 1997). These analyses have
considered discrete conservation of the spatial terms as analytical requirements for a

proper set of discretized equations. In general, this has meant a staggered arrangement
of velocity and pressure and the use of symmetric (central-difference) discretizations for

all spatial derivatives. Because of the fractional-step method normally used for time
advancement, however, the same conservation requirements cannot be enforced in time.

Although the associated errors are generally small and dissipative, the system is not
conservative in a discrete sense.

The LES of the present contribution is based on a discretized form of governing
Eqs. (2.1) and (2.2) that is 2nd-order accurate and discretely conserves mass, momen-

tum, and kinetic energy (in the inviscid limit) in space and time. The resulting equations

closely resemble that given by the 2-level Crank-Nicholson scheme, with a slight mod-
ification to the convective term. In the following sections, the conservative discretized

equations are introduced, their conservation properties are derived, and the details of
their efficient solution is presented.

3.1. The discretized equations

Extending the notation of Morinishi et al. (1998) to include time, we introduce the

following discrete operators for 2nd-order differencing and averaging on a structured
orthogonal grid.

J1¢ ¢(xl + hl/2, x2,x3,t) - ¢(xl - hl/2, x2,x3,t)

51Xl xl,x2,x3,t _-- hi (3.1)

__lXl xl,x2 (_(Zl +hl/2, Ze,x3,t)+¢(xl -hl/2,xe,z3,t)O = (3.2)
,X3)t 2

¢---_1_1 _,,_:,_3,t - 1¢(Xl + hl/2, x2,z3,t) ¢ (zl - hl/2, x2,x3,t) +
(3.3)

½¢ + h /2, t) ¢ - h,/2, t)
In the above equations, ¢ and ¢ represent discrete variables that may be cell-centered

or staggered, and hi is the grid spacing in the xl direction. Discrete operators in the x2,
x3, and t directions are similarly defined. To avoid confusion in the already cumbersome

notation of the following sections, the overbar used in Eqs. (2.1) and (2.2) is dropped,
and capital letters are used to represent the discrete velocity and pressure fields.

Using this notation, a 2nd-order accurate discretization of continuity equation (2.2) is

_Ui

5ixi - O. (3.4)

Because Eq. (3.4) is in discrete divergence form, it is a priori conservative, and we would
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expect the scheme to conserve mass locally and globally. Assuming zero viscous and

subgrid stresses, a 2nd-order accurate discretization of the momentum equation is

_1t1"_--_ 71*j (flP (3.5)
51Ui 1 j i -_- _ _-0.

51----i-+ 51xj 51x_

Because all terms in Eq. (3.5) are in discrete divergence form (including the time term, if

the concept of discrete divergence is extended to time as well), it is a priori conservative.

Thus, momentum is conserved locally and globally in space and time.

3.2. Discrete kinetic energy conservation

As pointed out by Morinishi et al. (1998), local kinetic energy cannot be defined unam-

biguously on the staggered grid because the velocity components are stored at different
locations. The required interpolation of velocity components is consistent if we choose

the cell center (the location of P) as the location about which to develop the kinetic

energy equation.
The vector dot product of the velocity with the momentum equation (3.5) produces

the kinetic energy equation which, including the appropriate discrete 2nd-order interpo-

lations, takes the form

lxl

--it 1 j i + =0

ui _ 61t + _ixj

The 1.h.s. of (3.6) can be expanded into 3 terms, each of which will be analyzed for

conservation separately:

(Time) +(Conv.) + (Pres.) = 0. (3.7)

Using the identities described by Morinishi et al. (1998), the (Time) term can be

rearranged as follows

__ilt_lUi lzi (_lUiUi/2 ix' _lUiUi/--2 lzi 51K (3.8)
(Time)=-_lt = 61t = _lt = -(51t

where the kinetic energy, K, is defined

_1. (3.9)K = U_U_/2 '.

Equation (3.8) is in discrete divergence form, and thus the (Time) term of the K equation
is conservative. The pressure term can be rearranged as follows

lxl 1_ --lt--lxi _lt
1Ui P pS1Ui (3.10)

(Pres.) -_lt 5fi__P _
= i _f_xi 5_xi 51xi

The first term on the rhs is in divergence form, and the second term involves the discrete

continuity equation, which is identically zero. Therefore, the (Pres.) term of the K

equation is conservative. Finally, some manipulation of the (Cony.) term yields:
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_------_lzi--@_lxj lxl

(Cony.) = _1_ _1uj u_
(_1xj

--_-1 z, _ lxj lxl
-- ' --1 t--I I_ ___-1 :cl lxi

1 _IUj Ui Ui lv-_.ltv-_-,lt_lUj

= 2 _lzj + _v_ u_ _ (3.11)

The first term on the rhs is in divergence form, and the second term involves the dis-

crete continuity equation, which is identically zero. Therefore the (Conv.) term of the K
equation is conservative.

3.3. Solution procedure

The coupled, fully-implicit, non-linear system of equations resulting from this choice of

discretization can be quite stiff, particularly on the highly stretched grids typical of LES

and DNS of wall-bounded shear flows. In the present work, the system is solved iteratively

at each time step using algebraic multigrid with smoothing based on the Symmetric

Coupled Gauss-Siedel method of Vanka (1986). The system's stiffness is handled by

coarsening preferentially in the direction of greatest coefficient strength, a multigrid
technique referred to as semi-coarsening (Wesseling 1992). With the judicious selection

of coarse grids, it is possible to reduce the maximum residual by 6 orders of magnitude

with about 50 workunits per time step (1 workunit is equivalent to one smoothing sweep
through the finest grid). Although relatively expensive per time step when compared to

the fractional step approximation, the present fully-implicit system is numerically stable

for any choice of computational time step, and the discrete conservation properties ensure
the method is not dissipative in space and time.

4. Validation: the transitional channel flow

The temporal transition in a channel has been used in the past to demonstrate the

performance of the various dynamic models (Germano et al. 1991, Meneveau et al. 1996).
As a validation exercise, the discretely conservative solution method described above was
used to solve this flow.

The initial condition consists of a parabolic profile superimposed with a 2-dimensional

Tollmien-Schlichting (TS) mode of 2% and a 3-dimensional TS mode of 0.02%. The

Reynolds number is 8000 (based on laminar centerline velocity), and the dimensions of

tile computational domain, normalized by channel half width, are 27r x 2 x 47r/3 in the

streamwise, wall-normal, and spanwise directions respectively. For more details, see Zang
et al. (1990). As the solution is integrated ahead in time, the TS modes are amplified and

the flow undergoes natural transition, leading eventually to fully developed turbulence.

Figure 2 compares the time history of the calculated wall shear stress with that from

the DNS of Zang et al. (1990). The results for two different grid resolutions are reported.

When compared to the DNS result, both LES results capture the characteristic shape of

the curve, including the drag crisis. In both cases, the peak wall shear is slightly over-
predicted although this has been observed before (Meneveau et al. 1996). In the case of

the coarse grid simulation, however, the entire transition is significantly delayed. This
delay is likely explained by the under-predicted linear amplification rate of the coarse

finite differences. Solution of the Orr-Sommerfeld equation using the same wall-normal
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FIGURE 2. Time history of average wall shear stress from the transitional channel simulation.
fine LES (32 x 128 x 64); .... coarse LES (32 × 64 x 32); • DNS of Zang et al. (1990)

grid distribution and finite-difference numerics yields an amplification factor (the imag-
inary part of the eigenvalue) for the imposed 2-dimensional TS mode of wi = 0.002222.
The "exact" value of _i = 0.002664 (Zang & Krist 1989) is higher by a factor of 1.2,

corresponding closely to the inverse ratio of the duration of the linear amplification pe-
riods of about 220/180 = 1.2. To show that this should be the case, assume the linear

amplification period ends when the amplitude of the imposed 2-dimensional TS mode,

¢o, reaches some critical level, ¢c. Two different simulations that amplify this mode at
different rates will reach the critical amplitude at different times, according to

¢c = ¢o e_'l/'tl = ¢°e_'2At2" (4.1)

Solving (4.1) for the time ratio yields Atl/At2 = wi2/_il.

5. Simulation of wake-induced transition

5.1. Problem definition

As in Wu et al. (1999), the present LES was designed following the experiment of Liu

& Rodi (1991). Dimensions were scaled by the characteristic length scale, L, equal to
the minimum distance from the upstream cylinders to the leading edge of the flat plate.

Velocities were scaled by characteristic velocity scale U_e/, the freestream velocity in
the absence of wakes. The problem Reynolds number was Re = U_efL/u = 1.5 x 105.

The downward velocity of cylinders was Ucyt/U_! = 0.7, and the passing wake period

was T = 1.67L/Ur_f, corresponding to case number 4 in the experiments of Liu & Rodi

(1991).

5.2. Boundary conditions

The application of boundary conditions followed the procedure described in Wu et al.

(1999) with one exception: the precomputation of the self-similar plane wake used as
the inlet condition was appropriately filtered for the coarser grid spacing of the present

simulation.

5.3. Computational domain

Figure lc schematically illustrates the computational domain used in the present LES.
In an effort to minimize the problem size, the domain selected was only a fraction of the



256 F. E. Ham, F. S. Lien, X. Wu, M. Wang 8J P. Durbin

DNS domain of Wu et al. (1999). In the streamwise direction, the domain was shortened

to just include the transition, 0.1 < x/L < 1.75. In the spanwise direction, the domain

width was 0 < z/L < 0.1, and in the wall-normal direction, 0 < y/L < 0.3.

5.4. Grid spacing and time step

The grid spacing requirements for accurate DNS of bypass transition have been well

established through grid independence studies performed as a part of recent simulations.

For the bypass transition simulations of Jacobs & Durbin (2000), the grid spacing (based

on maximum friction velocity) was Ax + = 11.7, Az + = 6.0. This is in agreement with

the earlier recommendations of Rai & Moin (1993). The DNS of Wu et al. (1999) used a

slightly coarser spacing of Ax + = 24, Az + = 11 (based on friction velocity at x = 3).

The grid spacing requirements for accurate LES of bypass transition, however, are less

well established. In the bypass transition LES of Yang et al. (1994), the grid spacing was

Ax + = 80 and Az + = 14. Based on the experience gained through the present research,

we believe this streamwise spacing to be too coarse to resolve discrete turbulent spots.
In the present work, the finest grid size used was 256 × 64 × 48, which corresponded to

a grid spacing based on maximum friction velocity of Ax + = 45 and Az + ----17. In the
wall-normal direction, spacing at the wall was Ay+ _ 2.

The computational time step was set constant at At = O.O03L/Uref, which corre-
sponded to a time step in wall units (based on maximum friction velocity) of At + =
Atu_/u = 1.3.

5.5. Computational details

The combination of reduced domain size, increased grid spacing, and increased compu-
tational time step yielded a reduction in problem size by a factor of about 160 relative

to the DNS. Computations were carried out on a parallel PC cluster at the University of
Waterloo. Simulations were typically run for 10 wake passing periods (about 5500 time
steps), and required about 3 days using 32 nodes of the cluster.

6. Results

6.1. Instantaneous fields

The relatively small size of the present LES (about 700,000 grid points) afforded some

experimentation with the grid spacing. The first simulations were performed on relatively
coarse grids with Ax + = 95 and Az + = 35. Although transition was observed to occur

at approximately the correct location (when compared to the DNS), inspection of the

instantaneous velocity fields did not reveal isolated turbulent spots. Further, the spanwise

resolution in these coarse simulations was certainly not capable of properly resolving the
backward jet structures, which appear to have a width of about 60 wall units.

6.1.1. Turbulent spots

In the finest LES, however, distinct turbulent spots were clearly discernible. Figure 3
uses the fluctuating velocities in the wall normal direction at 5 equally spaced times

to visualize the transition. The interaction between the passing wake and the laminar

boundary layer appears as elongated puffs at tit = 0, but breakdown to a turbulent spot

does not occur until some time closer to tiT = 0.4. At tiT = 0.4, the isolated spot is
clearly discernible with its characteristic arrowhead pointing upstream. As the turbulent

spot is convected downstream, it grows and eventually merges with the fully turbulent
portion of the boundary layer.
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FIGURE 3. Visualization of turbulent spot formation and growth using v-component of fluctu-

ating velocity in the x-z plane near the wall (y/699 = 0.4 at x/L = 0.8). Contours represent
-0.1 < v/Urel < 0.1 in 0.01 increments.

While qualitatively similar to the DNS result, the following important differences are

noted:

(1) The front separating the laminar and fully turbulent portion of the boundary layer
is much more irregular in the LES, with long fingers of turbulence reaching significantly

upstream. These fingers are thin in the spanwise direction but do not dissipate or convect
downstream with the rest of the boundary layer when not being fed by spots.

(2) In the LES, the streamwise location at which the turbulent spots merge with the

fully turbulent portion of the boundary layer is in the range of x = 1 to 1.2. In the DNS,

this location was further downstream at x = 1.5 to 1.7.

(3) Close inspection of the turbulent spot reveals the presence of 2 - A fluctuations in

the velocity field near the upstream edge, indicating under-resolution in the streamwise

direction particularly.

6.1.2. Backward jets

The backward jet structures observed in the DNS as consistent precursors to turbulent

spot formation were also resolved by the LES. By saving restart files regularly, it was

possible to stop the simulation when a turbulent spot was identified and restart at an
earlier time to look for evidence of spot precursors. Figure 4a) plots the fluctuating

velocity vectors in the x - z plane at an elevation near the top of the boundary layer just
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FIGURE 4. Fluctuating velocity vectors upstream of a future turbulent spot showing backward
jet structure, a) x - z plane; b) x - y plane.

prior to the appearance of the turbulent spot visualized in Fig. 3. A strong backward jet
is evident. The spanwise width of the jet is about 80 wall units, similar to those seen in

the bypass transition DNS of Jacobs & Durbin (2000). Figure 4b) shows the fluctuating
velocity vectors of the same jet through the x - y plane.

6.2. Average quantities

To make our investigation of this transitional flow more comprehensive, unsteady RANS
simulations were also performed. These simulations used the STREAM code of Lien &

Lesehziner (1994), and the v 2 - f turbulence model of Lien & Durbin (1996). Computing

time per simulation was approximately 2 hours on a desktop PC. This represents a

reduction in computational effort of about 2 orders of magnitude compared to the LES.

Figure 5 compares the average skin friction calculated by the LES and RANS to

the DNS of Wu et al. (1999). Both the LES and RANS correctly predict the onset of

transition. In the case of the LES, however, the transition length is under-predicted.

This is consistent with the observation that the turbulent spots merge with the fully
turbulent boundary layer further upstream than in the DNS. There are several possible

explanations for this although the most compelling is that the dissipation rate given by
the standard dynamic model is simply too low in the transition region, where the spanwise

averaging used in calculating the model constant includes significant regions of laminar

flow. This explanation suggests that another incarnation of the dynamic model might be

more appropriate for modeling this type of transitional flow even when a homogeneous

direction is present such as the dynamic localization model of Ghosal et al. (1995) or the
Lagrangian dynamic model of Meneveau et al. (1996).

The transition length predicted by RANS agrees with the DNS result although the
overshoot of average skin friction relative to the flat plate correlation (seen in both the

DNS and present LES) is not observed. No tuning of model constants for this particular
flow was done.
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7. Conclusions

LES and unsteady RANS simulations have been made of a spatially-evolving fiat-plate

boundary-layer undergoing transition induced by periodically passing wakes. The LES
used a novel kinetic-energy conserving finite-volume discretization of the incompressible

Navier-Stokes equations and the standard dynamic Smagorinsky subgrid-scale model.
RANS simulations were based on the STREAM code of Lien & Leschziner (1994) with

the v 2 - f turbulence model of Lien & Durbin (1996).
Overall, RANS and LES both have benefits when applied to this flow. RANS predicts

a slightly superior average skin friction coefficient at enormously reduced computational

cost although the performance under more complex conditions (for example, flow in a
turbine cascade involving complex geometry, higher freestream turbulence intensity, and

pressure gradients) remains to be tested.
The LES was able to resolve both turbulent spots and their backward jet precursors,

consistent with the recent DNS results of Wu et al. (1999) and Jacobs & Durbin (2000).

The location of the onset of transition agreed with the DNS result; however, the transition

length was under-predicted. This discrepancy may be related to the spanwise averaging
used in the calculation of the subgrid scale model coefficient, and other implementations

of the dynamic model might give superior results. The potential improvement from these
other models remains to be tested and is the subject of ongoing research.
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The large eddy simulation group

The eight LES projects in this group were fundamental in nature and aimed at de-

veloping improved LES methodology. There were other applied LES projects reported
elsewhere in this volume which consisted of evaluating some variants of the LES method-

ology for industrial use.
Carati and Wray explored the efficacy of the time filtered Navier Stokes equations.

The equations are closed using a Leonard type expansion and discarding the higher
order terms. The equations have a non-linear dependence on the velocity derivative. It

was found that lagging this term in time is sufficient for stable numerical solution. The

time filtered Navier Stokes calculations with the Leonard closure apparently did not

have sufficient dissipation when applied to the problem of decay of isotropic turbulence.

Accordingly, additional spatial filtering was performed and two variants of the dynamic

eddy viscosity model were included. The space-time filtered equations did produce slightly

improved results as compared to the usual spatially filtered equations.

Lagrangian averaging of the flow equations is physically more appealing than the usual

spatial or time averaging. This is because averaging is not performed over the turbulent

eddies, and thus some of their spatio-temporal features are preserved. Mohseni et al.
evaluated the so called a equations or the Lagrangian Averaged Navier Stokes equations

in the problem of decay of isotropic turbulence. Although there is some ambiguity in the

physical interpretation of the variables being solved for, the results from high resolution

computations appear to be competitive with those of dynamic LES. However, the results

computed with coarse resolution, typical of those expected of robust LES, were not

satisfactory. Apparently, the LANS equations are mathematically better understood than
the Navier Stokes equations. Hopefully this can be beneficial in analyzing the deficiencies

of the model, which in turn could lead to a new predictive tool for turbulent flows.

Recently several investigators have proposed LES methodologies based on advancing

two sets of equations, the customary large scale field and the equation for the small scales.

For such approaches to be attractive, one should have the benefit of better subgrid scale
models and an efficient algorithm for advancing the equations for small scales. Clearly,

this approach is more expensive than standard LES with algebraic models, the question
is how much more expensive, and whether novel algorithms can be developed that could

take advantage of the small scale structures. Hersant, Dubrulle and Wang evaluated

the relative importance of several terms in these equations that require closure using
turbulent channel data from DNS. They showed that the non-local terms, also known

as subgrid scale cross terms, are dominant especially for high Reynolds number data.
However, it is not clear that a more accurate modeling of the cross terms is sufficient for

actual LES computations, as experience with the mixed models has indicated.

Three papers in this group report on evaluations of wavelet-based turbulence decom-

positions. The objective is to conduct LES with the least number of degrees of freedom.
The wavelet expansions were shown to be particularly efficient in representing turbulent

vorticity fields. Moreover, most wavelets tested were able to extract the deterministic
or coherent part of the fields, and the remaining subgrid residual fields were nearly

Gaussian. Statistics of Gaussian residual fields are, of course, easier to model. The per-

formance of various wavelet decompositions were evaluated using highly resolved DNS

fields: Goldstein et al. and Farge et al. used forced and decaying isotropic turbulence

fields at respectable Reynolds numbers, and Schneider et al. used forced and unforced
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mixinglayerfields.In thelattercasetheflowisdominatedbylargescalecoherentstruc-
tures,andthewaveletfilteringdoesanimpressivejobofextractingthecoherentpartof
thefieldswithabout3%of thewaveletmodes.In bothflowsit isshownthat wavelets
aremoreefficientthanFouriermodesin capturingthecoherentstructuresembedded
in thevorticityfieldswith thefewestnumberof modes.It is importantto notethat
all threeprojectswereessentiallykinematicalstudiesof theturbulentfieldsconsidered,
and the efficacy of the wavelet transforms for dynamical LES calculations remains to be
determined.

One of the pacing items for LES of high Reynolds number wall-bounded flows is the

modeling of turbulence in the vicinity of the wall. In this region turbulence is dominated

by small scale vortical structures which require significant computational resources to

resolve, and hence for engineering and geophysical applications one resorts to model-

ing, as opposed to computing, the effect of the inner region on the outer flow LES. At

CTR Nicoud had already shown that sub-optimal control theory can be used to deduce

wall-boundary conditions that take into account the subgrid scale modeling and numer-

ical errors and produce the correct mean velocity profile. During the Summer Program
Baggett et al. introduced transpiration velocity boundary conditions as an additional

parameter which led to a slight improvement of the results. They also attempted to
reduce the streamwise turbulent intensities which were too high in their previous work

by including it as a penalty in the cost function. This led to a modest improvement

in the turbulent intensity profiles. They also demonstrated that their linear wall model,
which was a good fit of their sub-optimal computations, is not very robust when different
numerical methods or grid anisotropy are used.

One of the promising applications of LES is in prediction of flow generated noise.

Lighthill's acoustic analogy is often used to compute the far-field noise using sources
obtained from incompressible computations. Oberai and Wang tested a novel methodol-

ogy for computation of the far-field noise which uses the surface pressure fluctuations as

input to the calculations. They used the data from Wang's LES of a hydrofoil trailing
edge. Unfortunately, they discovered that because the formulation is in terms of appar-

ent monopoles, it was susceptible to numerical errors. This work is a subject of ongoing
investigation at CTR.

Parviz Moin
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An explicit time filter is applied to the Navier-Stokes equation prior to a space filter.
The time filter is supposed to be smooth, and an exact expansion depending on the time

derivatives of the velocity is derived for the associated stress tensor. On the contrary, the

effect of the space filter is treated as usual and an eddy viscosity model is introduced in

the LES equation. The total stress is thus represented using a new class of mixed models

combining time and space derivatives of the LES field.

1. Introduction

Large eddy simulations are usually regarded as numerical experiments in which only

the largest structures are computed explicitly while the effects of the small scales are
modeled. The separation between large and small scales is traditionally assumed to be

obtained by applying a spatial filter to the Navier-Stokes equation. Various types of
filters have been introduced, like the Gaussian filter, the top-hat filter, or the Fourier

cut-off. However, some of these filters, like the Gaussian and the top-hat filters, do not

really reduce the number of degrees of freedom. They simply transform the turbulent

field ui into a new field vi for which the evolution equation requires as much information
to be solved as the Navier-Stokes equation. We will refer to these filters as "smooth

filters." In order to reduce the number of degrees of freedom, Fourier cut-off type of

filters are required. We will refer to these filters as "projective filters" since they project

the turbulent field ui onto a field _i which can be captured on a coarser grid.

In a recent study, Carati, Winckelmans and Jeanmart (2000) have analyzed the ad-

vantages of using a combination of smooth and projective filters for defining the LES
field. Their study gives some theoretical support to the use of mixed models (Vreman

et al., 1997, Leonard & Winckelmans, 1999, Winckelmans et al., 2000) containing an

eddy viscosity term representing the effects of the projective filters and a product of first
order derivatives of the velocity characterizing the effects of the smooth filter. In the

present study, we will investigate the possibility of replacing the smooth spatial filter by

a smooth time filter.

2. Time filtering and the Navier-Stokes r equation

2.1. Derivation o/ the Navier-Stokes r equation

Let us consider that the Navier-Stokes equation is filtered using a time averaging:

_ t tv,(t) = dt' G(_ --) ui(t').

t Universit_ Libre de Bruxelles, Brussels, Belgium
_: NASA Ames Research Center, Moffett Field, CA

(2.1)
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Here r is the temporal width of the filter. In this preliminary study, it will be considered

as a constant both in space and in time. This guarantees the commutation between the

filtering and both the space and time derivatives. For any symmetric filter with a C _

Fourier transform (which is true for a very wide class of filters including the top-hat

and the Gaussian filters), Carati, Winckelmans and Jeanmart have proved the following
equality:

G(t-t')ui(t')uj(t')dt' E c_T = r _+_ O'[v, O_vj. (2.2)

The coefficient e_8 is derived from a generating function based on the Fourier transform
G(wr) of t-t'G(--7---). The simplest situation corresponds to the Gaussian filter, in which
case the double series reduces to a single one:

_ _ T2rG( )u_(t')uj(t')dt' = E _. O[vi a[vj. (2.3)
r-._O

The LES equation thus reads:

-_ T 2r OrlJi _ruj
Otvi +Oj r! Ot _ Ot _ - -cgiP + vV2vi" (2.4)

r:O

Keeping all of the terms in the series (2.2) amounts to assuming that the LES is infinitely
accurate in time, which is not realistic. Hence, we have to truncate the series. In the case

when only the lowest orders in r are kept, the filtered equation reads:

_i = -0,p - O_ (v, v3 + T_ _, _j) + _V_v,, (2.5)

where we use the same notation p in the equations for both ui and vi since it is only used
to enforce continuity. Quite remarkably, this lowest order expansion is not restricted to

the Gaussian filter and is valid for all symmetric filters with a C a Fourier transform.

We will refer to this generic equation as the Navier-Stokes tau (NS-T) equation. Here vi
refers to the Eulerian time derivative: iJi = Otvi. The only difference between the NS and

the NS-r equations comes from the term proportional to T 2 that can be seen as a forcing:

f i = -Oj i;i i2j . (2.6)

Strictly speaking, fi has the dimension of a density of force divided by the square of a

time since we did not include the factor T2 in the definition of fi- This choice will allow

us to keep track explicitly of the power of r in each term. Of course, this notation hides

the fact that the NS-r equation is implicit in _)i. Yet, it will be useful in simplifying the
discussions on the balance equations.

It is important to remark that the NS-r equation is not equivalent to the original
Navier-Stokes equation since the higher order terms in the series (2.2) have been ne-

glected. However, since the NS-r is only intended to be used in LES, it is hoped that the

higher order terms can be lumped into tile subgrid-scale models when projective filters
are applied to the NS-r equation.

2.2. Balance equations

We have not been able to derive a conservation law for the inviscid NS-r equation.

Nevertheless, we have derived two balance equations that can be useful in code checking
and in appreciating the effect of the r term on the dynamics of vi. First, we consider the
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evolution of (vivi/2):

d 1
dt 2 (vivi} = -r 2 (viOjiJiijj) = r2 (vifi). (2.7)

Here, the brackets denote the volume average. Not surprisingly, since the additional r
term acts like a force, its contribution to the "energy" balance takes the usual (vifi)

form. The equation for the second order time derivative is readily derived from the NS-r

equation,

= -o,p - oj vj + + + + . (2.8)

From this, we can derive another balance equation (always in the limit of zero viscosity):

d I (_i_,) = -(_03_j) - _2(_,0j_v3) • (2.9)
dt 2

Using the identity (viOjiJii_j) + @iOjvii;j) = (Ojvii;ii_'j) = 0, we obtain the following

balance equation:

d 1 (vivi + r21)i/;i) = --ra(i;icgj{)ii)j) • (2.10)
dt 2

Finally, we remark that (biOji_ii_j} = 0. Hence, the time derivative of this quantity also

vanishes, which implies, (iJiOji)iiJj) = -(i)iOii_ii_j} = (_ifi) (here we also have used the

property @iOjiJii)j) = 0). The balance equation (2.10) finally reads:

dl
dt 2 (vivi + r2iJii_i) = r4(i)ifi) - (2.11)

In the limit of small r, the right-hand side of this balance will be very small and (vivi +

T2_i9i) should be almost conserved. This means that if the "energy" (vivi) starts to grow,

the average rate of change of vi, @d)i) should decrease, preventing an exponential growth
of the energy. Although these arguments are obviously not fully rigorous, they at least

support the idea that the NS-r equation should not lead to major instabilities in the

limit of small T.

3. Spatial filtering of the NS-T equation

Since the NS-r equation implicitly assumes the use of a smooth time filter, its simu-

lation is likely to require the same type of grid as the simulation of the NS equation. It
is thus necessary to apply a projective filter on the NS-r equation. The hope is that the

modeling of the subgrid scale tensor will be easier for the NS-r equation, which should
contain less energy in the small scales, than for the original Navier-Stokes equation. The

effect of the projective spatial filter, which will be denoted by an overbar, _i, should then

be taken into account through a model. The total equation for _i would then read:

-_i = --Oip -- Oj (Vi Vj -F T 2 -Vi "Vj) q- VV2Vi -- OjTij , (3.1)

where rij = vi vj - vi vj + r e (_i iJj --/h_j). Let us consider that this projective filter
removes all the information related to scales smaller than _. In this case, vii could be

modeled through an eddy viscosity term, for which we have used two types of scalings.
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3.1. Kolmogorov scaling .for the eddy viscosity

The Kolmogorov scaling for the eddy viscosity has been introduced in Wong & Lilly,
(1994) and Carati et al. (1995):

ri_ji _ -2 C_ _-4/3 Sij, (3.2)

where -Sij = (Oi_j + Oyi)/2. A dynamical approach (Germano, 1992, Germano et al.,

1991, Ghosal et al., 1995) has been implemented by considering two levels of discretiza-
tion. The second level of discretization corresponds to the elimination of scales smaller

A

than A and would be obtained either by the application of the operator A to Eq. (3.1):

vi = -Oi_ - Oj (v, vj + r 2 vi _j) + vV2vi - Oj_ij - OjLij, (3.3)

or directly by the application of the operator _ to Eq. (2.5):

A

_, = -a,_ - aj (_, _j + 7-2_, _j) + _v_, _ OjT,. (3.4)

The comparison of these two versions of the same equation leads to a Germano type
identity:

7-i_j+ Lij = Tij, (3.5)
where

Tij = vi vj - vz vj + 7-2 izi iJj - i_i bj , (3.6)

Lij = vi vj - vi vj + 7-2 vi -vj - vi yj . (3.7)

Assuming that C_ is independent of the level of discretization, Tij has to be modeled

using the same Kolmogorov scaling Ti M ._ -2 C_ _4/3 _q. If we assume, moreover, that

C_ is constant in space, this parameter can be derived by minimizing the volume average
of the square of the difference between the right-hand side and the left-hand side of:

-2 C_ -_4/3 _ij + Lij _ -2 C_ 24/a _ij , (3.8)

which leads to:

1 (nij Sij)

Ce _ -.4/3 ^
2 (A _ _4/3) (Sij _ij)

3.2. Smagorinsky scalin 9 for the eddy viscosity

Tile Smagorinsky (1963) scaling for the eddy viscosity has also been used

7-iAj' _ -2 C-_ 2 _ Sij ,

In which case, the dynamic prediction for C reads:

1 (Lij Mij)C_
__2 (Mij Mij) '2 (A - _2)

where

(3.9)

(3.10)

(3.11)

(3.12)
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4. Solving the spatially filtered NS-r equation

Solving the NS-r equation requires solving an implicit quadratic equation for 9i. Dif-
ferent methods have been considered. First, an iterative scheme has been implemented

for solving the unfiltered NS-T equation:

_)n+a = (1_ A)_)n +/_(_Oip_Oj(YiYjq_T2ijni);)+ b,V2Vi). (4.1)

Although this method converges, it usually reqmres many iterations, especially for r/dt >>

1. However, when the spatially filtered NS-_- equation is considered, convergence proper-

ties appear to be much more favorable. For this reason, we adopted the simplest scheme,
namely using the previous time step value of bi in the the right-hand side of the spatially

filtered NS-r equation:

iJi(t + dt) = -Oip - Oj (vi vj + _.2 iJi(t) i_j(t)) + uV2vi - Oj'cij. (4.2)

We also report an alternative technique that could be used for solving this implicit

equation: by using the equation for the second order time derivative, one still has to solve

an implicit relation (for i)i), but it is now linear in i)_. This motivates the formulation of

the NS-T equation in terms of two variables vi and wi -- _i- The filtered version of these

equations is

_i = wi, (4.3)

¥i = _'v _, - 0,7' - oj (_,vj + v_ + _-2w,_ + _-2w,¥5) - oj_j, (4.4)

--A-4/3S,, and Sit = (OiNj + OjWi)/2. The parameter C_ is the same aswhere Tij = -2 C_ ,-- _j
in (3.9). The only approximation here is that the time derivative of C_ can be neglected.

The pressure-type term 0i7" is only used for enforcing incompressibility.
This alternative method also has the advantage of carrying all the information required

to check the second balance equation derived in Section 2. However, we have not yet

implemented this technique.

5. Numerical results

Various tests have been made for different values of T/dt. It must be noted that this

ratio is similar to the ratio between the filter width A and the mesh spacing dx in more

traditional LES. It is usually considered that A/dx >_ 1 is a minimal requirement for

numerical accuracy and that much larger values of this ratio will waste computational

resources. Hence, values of A/dx somewhat larger than 1 are usually considered. The

same approach has been adopted here. We have found that r/dt _ 1 produces results

indistinguishable from 7- = 0 and that large values of T/dt lead to numerical instability
when the previous time step value of vi is used on the right-hand side of the NS-T

equation. We thus adopted a value, T/dt = 4, for which the effect of the 7 term is
observable while the convergence of the NS-T equation is still ensured.

Tests with both the Kolmogorov and the Smagorinsky scalings for the eddy viscosity
have been made. In both cases, the model parameter has been computed dynamically.

Tests have been made for decaying turbulence, comparing a 512 a DNS with a 643 LES.

The temporal evolution of both the resolved energy and the resolved dissipations are

presented in Figs. 1-4. It should be noted that the dynamic Smagorinsky model is known
to produce good results for this case though it systematically overpredicts the total en-
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ergy. Also, without the 7- term, the Smagorinsky and Kolmogorov scalings are known to

produce almost indistinguishable results. The results presented in Figs. 1-4 are interest-

ing in two respects. First, the effect of the time filtering, though quite limited, definitely

improves the prediction for both the resolved energy and the resolved dissipation. Re-

markably, the improvement is systematically better when the Kolmogorov scaling is used



Time filtering in large eddy simulations

102

D

I e

%

-3
10l(j 3

10_
k

FIGURE 5. Energy spectrum at t = 2.6 in

the units of Figs. 1-4 for truncated DNS (.),

LES with the dynamic Smagorinsky model
(.... ) and LES with the dynamic Smagorin-
sky model and the v term (_).

269

\\

;o ..... ib'
k

FIGURE 6. Energy spectrum at t = 2.6 in the
units of Figs. 1-4 for truncated DNS (-), LES
with the dynamic Kolmogorov model (..... )
and LES with the dynamic Kolmogorov model
and the v term (--).

for the eddy viscosity. Actually, when this model is used for the NS-T equation, the results

almost perfectly fit the DNS results.
It should be noted, however, that the energy spectra do not show such a perfect

agreement between DNS and LES. In all cases the energy in the low wavenumber range of
the LES is overpredicted while the high wavenumber energy is underpredicted. Also, the

difference between the Smagorinsky and Kolmogorov scalings is more clearly observed in

the spectra. The addition of the T term does not improve the performance of the dynamic

Smagorinsky model in the energy-containing range, but the overprediction of the energy
in the low wavenumber range is somewhat improved when the T term is added to the

dynamic Kolmogorov scaling.

6. Conclusion

The combination of a smooth time filter and a projective space filter has been proposed

and tested for LES of decaying isotropic turbulence. The effect of the smooth time filtering

has been taken into account through an exact expansion which does not require any

modeling. Only the first term of this expansion, which is generic for a wide class of

smooth filters, has been retained in our approach. The resulting equation, referred to as

the Navier-Stokes _- equation, only differs from the original equation by a new forcing

term depending on the first order time derivatives of the velocity. As a consequence, the

Navier-Stokes T equation is implicit in this time derivative. Three major points have been

learned from this study:

(1) Using the previous time step value of the time derivative in the new term repre-

senting the effect of the time filter has been shown to be easily implementable and stable

for values of T/dt of the order of 4.
(2) The effect of the new term is rather limited but does tend to improve the predictions

when compared to a pure eddy viscosity model.

(3) The mixed model including the T term and a dynamic eddy viscosity term is more
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sensitive to the type of scaling used for the eddy viscosity than are purely dynamic eddy
viscosity models.
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The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as
a turbulence closure. They are derived from a novel Lagrangian averaging procedure on

the space of all volume-preserving maps and can be viewed as a numerical algorithm
which removes the energy content from the small scales (smaller than some a priori fixed

spatial scale a) using a dispersive rather than dissipative mechanism, thus maintaining
the crucial features of the large scale flow. We examine the modeling capabilities of the

LANS equations for decaying homogeneous turbulence, ascertain their ability to track

the energy spectrum of fully resolved direct numerical simulations (DNS), compare the

relative energy decay rates, and compare LANS with well-accepted large eddy simulation

(LES) models.

1. Introduction

Over the last thirty years direct numerical simulation of turbulent flows at small to

moderate Reynolds numbers has been a valuable asset in understanding turbulence phe-
nomena. In such simulations the motion of eddies ranging in size down to the Kolmogorov

dissipation length scale are explicitly accounted for. The main difficulty in the turbulence

engineering community is that performing the DNS of typical engineering problems (usu-
ally at high Reynolds numbers) is very expensive and, therefore, unlikely to happen in
the foreseeable future. This is mainly because the number of degrees of freedom for

three-dimensional Navier-Stokes flow grows rapidly with Reynolds number; namely, it is

proportional to Re 9/4. Consequently, increasing the Reynolds number by a factor of 2

will increase the memory size by a factor of 5 and the computational time by a factor of

10.
There are methods for simulating turbulent flows where one does not need to use the

brute-force approach in DNS of resolving all scales of motion. A popular alternative is

LES, in which only large scales of motion are resolved while the effect of small scales is
modeled. The basic idea behind LES is to define a large scale field through a low-pass

filtering of the flow variables; therefore, the governing equations for the mean flow quanti-

ties (large scales) are obtained by filtering the Navier-Stokes and continuity equations. In

inhomogeneous, e.g., wall bounded, flows, the filter width must be a function of position

so as to capture the average size of the turbulent eddies that vary in space.

t Division of Engineering and Applied Science, California Institute of Technology
1: Department of Mathematics, University of California, Davis
¶ Unite de Physique Stat. et des Plasmas, Universite Libre de Bruxelles, Brussels, Belgium
II NASA Ames Research Center, Moffett Field, CA
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Another method is the Reynolds averaging of the Navier-Stokes equations, or RANS.

In this approach the flow field is decomposed into a time- or ensemble- averaged mean

flow and a fluctuating perturbation field. Substitution of this field decomposition into the

Navier-Stokes equations results in a set of differential equations for the mean flow quan-

tities containing contributions from the time-varying, turbulent motion. This requires
the introduction of a turbulence model to describe the effect of these fluctuations on the
inean.

The closure problem in LES is a central issue in turbulence modeling. It is believed

that turbulence at small scales retains a higher level of homogeneity, which makes it more

susceptible to modeling. The rationale is that only the large-scale motions are noticeably
affected by the geometry of the domain, while the small scale motions are self-similar or

even universal throughout the bulk of the flow. Hence, the main goal of LES modeling

is to accurately model the net effect of small scales (subgrid scales) on the dynamics of
large scales (grid scales) without solving for the evolution of small scales.

In this study, we consider a new approach introduced in Marsden & Shkoller (2000).
Unlike the traditional averaging or filtering approach used for both RANS and LES

wherein the Navier-Stokes equations are averaged, the novel Lagrangian approach is
based on averaging at the level of the variational principle from which the Navier-Stokes

equations are derived. Namely, a new averaged action principle is defined. The least

action principle then yields the so-called LAE equations when the flow is deterministic;

when the flow is a stochastic process and covariant derivatives are replaced by mean

backward-in-time stochastic derivatives, the LANS equations are obtained via the Ito

formula of stochastic calculus (just as the Navier-Stokes equations are obtained from the
usual non-averaged action principle).

The averaged Euler models were introduced on all of _3 (the three-dimensional Eu-

clidean space) in Holm, et al.(1998), on boundaryless manifolds in Shkoller (1998), on

bounded subsets of I_3 with boundary in Marsden, Ratiu, & Shkoller (2000), and on
manifolds with boundary in Shkoller (2000a); they were derived to model the mean mo-

tion of incompressible flows. A short review of the derivation of the Lagrangian-averaged
equations is presented in Section 2.

In this study, we shall concentrate on homogeneous flows, specifically on decaying

isotropic turbulence. Such flows are unbounded and thus differ from flow in regions
near solid boundaries, but they provide an ideal test case for the adjustment and ver-

ification of new turbulence theories and models. An anisotropic version of the LANS

equations was recently developed by Marsden & Shkoller (2000). The modeling capabil-
ities of the anisotropic LANS in channel flows will be the topic of a future publication.

The anisotropic model provides a natural "dynamic" rescaling that allows the spatial
scale for the averaging (a2F defined in the next section) to be time dependent as well as
orientation dependent.

This report is organized as follows. In the next section a review of the LANS equations

is presented. The numerical technique adopted in this study is described in Section 3. Our

main numerical results are presented in Section 4 where computations on LAE as well

as LANS equations are discussed. Some strategies for calculating the initial Lagrangian-

averaged velocity field from the DNS data are discussed. Our findings are summarized
in Section 5.
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2. Lagrangian-averaged Navier-Stokes equations

In this section, we give a brief summary of the relevant background material on the

Lagrangian averaging approach and the resulting LAE and LANS equations. The detailed
derivation of the LAE/LANS equations can be found in the article Marsden & Shkoller

(2000). Analytic results for classical solutions to these equations can be found in Shkoller

(1998), Foias, et a/.(1999), Shkoller (2000a), Marsden, Ratiu, & Shkoller (2000), Oliver

& Shkoller (2000), and Shkoller (2000b).

2.1. Lagrangian averaging

The Reynolds decomposition is an Eulerian decomposition of the spatial velocity field of

the fluid. The Lagrangian averaging procedure takes an entirely different starting point by

decomposing instead the Lagrangian flow of the velocity field. Let _(t, x) be the volume-

preserving Lagrangian flow of the random variable u(t, x) so that rl satisfies the ordinary

differential equation Otrl(t,x) = u(t,_(t,x)) (or its stochastic counterpart) with initial

condition 7/(0, x) = x. We choose a stochastic process _(t, x), parameterized by a > 0,

such that _s=°(t,x) = x for all time t, and for all t and a > 0, the map _s(t,-) : 12 --+

is a volume-preserving near-identity diffeomorphism. We denote the stochastic derivative

of _s with respect to a at a = 0 by _'; if the map t _ _s(t, .) were smooth, the vector

_' would be given simply by _'(t, x) = (d/da)Ja=o_ s (t, x). The stochastic process _' is an

element of a probability space P with measure dP, and by construction it has expected

value zero, _ = 0, i.e., _' has mean zero.

We then define a macroscopic flow field rfl (t, x) by

fls(t,x ) = (_s)-'(t,_(t,x))), (2.1)

or in shorthand notation

= - 1o ,,.

rls is the ]uzzy particle placement field which is only accurate down to the spatial scale

a; namely, a particle labeled x in the fluid container at t = 0 is mapped by _s(t, .) to

its new position at time t, and this new position rls(t,x) can be determined only to
within a distance a of the exact position _(t, x). The decomposition (2.1) is a nonlinear

Lagrangian decomposition of maps on the group of volume-preserving diffeomorphisms.

There is no vector-space structure on this group, so it is not appropriate to suppose an

additive decomposition as in the Reynolds decomposition.

We next define the corresponding spatial velocity fields u s and w s associated, respec-

tively, with the flows 7/s and _s. In particular, we define these velocities by

Ot_a(t,x) = wS(t,_s(t,x)), Ot_s(t,x) = uS(t,_(t,x)).

It is now possible, by differentiating (2.1) with respect to time t, to obtain the relationship

between u, u s, and w a. We find that

uS(t,x) = D(_a)-l(x) . [u(t,_s(t,x) - wS(t,_a(t,x))] . (2.2)

The notation D(_S)-l(x) means the matrix of partial derivatives of the inverse map

(_s)-I evaluated at the point x in ft.

Now, the inviscid portion of the dynamics of the Navier-Stokes equations is governed

by a simple variational principle, or action, which is just the time integral of the kinetic
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energy of divergence-free vector fields:

1 ft'iL f_S = _ lu(t,x)]2dxdt.

The Euler-Lagrange equations for S(u) are the incompressible Euler equations, and if one

allows the flow of the Euler solution to undergo a random walk, then the Navier-Stokes

equations immediately arise (see Chorin (1973) and Peskin (1985)).

In order to obtain LANS equations, we shall define an averaged variational principle

using our macroscopic or fuzzy Lagrangian description of the fluid. As such, we define

the averaged action by

S _ 1 fil_f p= _ ]uS(t, x)]dPdxdt, (2.3)

where we have averaged over all possible perturbations or Lagrangian fluctuations of the
exact flow.

At this stage, we asymptotically expand uS(t,x) about a = 0, and make the Taylor

hypothesis that the Lagrangian fluctuation is frozen into the mean flow. We obtain (after
a convenient rescaling) that

u"(t, x) = u(t, x) + 2u Def u(t, x) . _'(t, x) + O(a3), (2.4)

where

I [Vu + (VuF]Def u = _

Notice that u(t,x) is the mean of u s since u-_ = u, and that to O(_3), Defu • 4' is the

Eulerian fluctuation. Defining the Lagrangian covariance or fluctuation tensor by

F(t, x) = fp _' ® _'dP, (2.5)

substituting the expansion (2.4) into (2.3), and truncating at O(u3), we obtain the first-

order averaged action principle S_ as a function of the divergence-free mean u and the
covariance F:

S_ (u, F) = -_ [u.u + 2a2F : (Def u. Def u)] dxdt. (2.6)

2.2. The LANS and LAE equations

We define the fourth-rank symmetric tensor C by complete symmetrization of F ® Id, so
that in coordinates

cijk t = 1 (FtJSi k q- FkJSil + FtiSjk + FkiSjl ) .
4

we then define the linear operator C, mapping divergence-free vector fields into vector

fields, by Cu = Div(C : KTu). By letting the Lagrangian flow of the mean velocity un-

dergo Brownian motions and computing the first variation of S_(u, F), we obtain the
anisotropic LANS equations for the mean velocity as

Otu + (u. V)u + Lla(u,F) = -(1 - a_C) -1 gradp + uAu, (2.7)
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where

U_(u,F) :=c_2(1 - c_2C) -1 -_ Div[Defu. (£uF) + (£uF). Defu]

- DivC : (Vu. Vu) - C ! V(Vu-Vu)

- c i Div(Vu ® Vu) + (Div[VC : Vu]) -u

-(Vu) T.cu+2f:V(Defu 2)-4Div[F'Defu2]}. (2.8)

The notation £_,F means the Lie derivative of the tensor F in the direction u, and., :,

etc., means contraction of indices as many times as dots appear. The term Ha(u, F) is

analogous to the term Div u' ® u r in the RANS equation, which is the divergence of the

Reynolds stress. As we noted, the LANS formulation provides a natural turbulent-closure.
In addition to the evolution equation for the mean given by (2.7), the calculus of

variations also provides the evolution equation for the covariance tensor as

OfF + £uF = 0. (2.9)

These two coupled systems of evolution equations are supplemented by the incompress-

ibility constraint div u = 0, initial conditions u(0, x) = u0(x), and boundary conditions,

for example no slip, u = 0 on 0f_.

After solving the LANS equations for the mean velocity u, one can then solve for
the Eulerian fluctuations 2c_ Defu • 4 r and "correct" the macroscopic velocity field to

O(c_3). This does not require the solution of the Navier-Stokes equations; instead, simple
linear advection problems for 4 t need to be solved. Letting the vector 4 t have Cartesian

components (41, 42, 43), these equations are given in component form by

0_4i + 4i,ju j + uJ,i4j = O. (2.10)

Equation (2.10) is obtained from the Taylor hypothesis (Marsden & Shkoller (2000)) and

plays the role of the "corrector" in the theory of homogenization.

Equations (2.7) and (2.9) are anisotropic, allowing for fluctuation effects to depend on

position and direction. There is a corresponding isotropic theory in which it is assumed
that the covariance tensor F is everywhere equal to the identity Id. In this case, the

first-order averaged action principle S _ is only a function of the mean velocity u and1,iso

is given by

S_,is o (u) = _ [u. u + 2c_2 Def u: Def u)] dxdt. (2.11)

Applying the calculus of variations machinery to (2.11) yields the isotropic LANS equa-

tion

OtU -[- (_l" V)U + _A/a'is°(u) _--- -(1 - a2A) -x gradp + vAu,
divu = O, u(O,x) = uo(z), (2.12)

u = 0 on 0f_,

where

H_,iS°(u) = c_2(1- a2A) -x Div [Vu. Vu T + Vu. Vu- Vu T" Vu]. (2.13)

The most obvious scenario in which one might assume the covariance is isotropic is in

decaying turbulence inside a periodic box. In this case, the isotropic LANS equations are
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Otu + (u. V)u + DivS_(u) = -gradp+ uAu,
div u = 0, (2.14)

with periodic boundary conditions imposed. S _ (u) is the Lagrangian subgrid stress tensor
defined by

S_(u) = _(I - _A)-' [Vu. Vu _ + Vu. Vu - Vu _. Vu].

Appropriate interpretation of the Lagrangian averaging process of the DNS data is
crucial in any successful comparison of the LANS computations with the DNS results.

A few different techniques for initializing LANS equations were considered in this study.

Apart from the truncation of the DNS data to the resolution of LANS simulations,

we have initialized LANS simulations by Helmholtz filtering or spatial averaging of the

DNS data. For the numerical simulations on the experiment by Comte-Bellot & Corrsin

(1966) and (1971) we found that using the filter based on the Helmholtz operator or
spatial averaging (top hat filter) resulted in a severe reduction of the initial resolved

kinetic energy to a fraction of that of a field truncated in Fourier space (i.e., using a
Fourier cut-off filter). We point out that such a reduction is independent of the model

used and diminishes the value of the tests. Consequently, all of the LANS results reported
in this study are initialized by sharply truncating the DNS data to the resolution of the
LANS calculation.

3. Numerical method

In this study we focus on the numerical solution of homogeneous turbulence. Our

computational domain is a periodic cubic box of side 27r. In a numerical simulation of

decaying turbulence, tile size of the computational domain puts an upper bound on
the growth of the large scales in the flow. This is consistent with the observation in

most experiments that the largest scales of motion are of the same order as the size

of the experimental apparatus. Given the number of grid points and the size of the

computational domain, the smallest resolved length scale or, equivalently, the largest

wave number, km_, is prescribed. In a three-dimensional turbulent flow, the kinetic

energy cascades in time to smaller, more dissipative scales. The scale at which viscous
dissipation becomes dominant and which represents the smallest scales of turbulence is

characterized by the Kolmogorov length scale r]. In a fully resolved DNS, the condition

k,,_,_q > 1 is necessary for the small scales to be adequately represented. Consequently,

k,,_ limits the highest achievable Reynolds number in a DNS for a given computational
box.

The full range of scales in a turbulent flow for even a modest Reynolds number spans

many orders of magnitude, and it is not generally feasible to capture them all in a

numerical simulation. On the other hand, in turbulence modeling, empirical or theoretical

models are used to account for the net effect of small scales on large energy- containing

scales. In the next section, the numerical simulations of decaying homogeneous turbulence
based on the full DNS, LES modeling, and LANS modeling are presented.

The core of the numerical method used in this study is based on a standard parallel
pseudospectral scheme with periodic boundary conditions similar to the one described
in Rogallo (1981). The spatial derivatives are calculated in the Fourier domain while the

nonlinear convective terms are computed in physical space. The flow fields are advanced
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FIGURE 1. LAE simulation t - to = 1.8, Euler (--e--). (a) N 3 = 643; for c_ = _, EL2(U)

('_), EHI(U) (--'--); for _ ----_, EL2(U) (.... ), EHI(U ) (........ ); (b) c_ = _; with
N_ = 483; EL2 (u) (--), Egl (u) (--'--); and with 643, EL2 (u) (.... ), EH_ (u) (........ ).
Note that in case (b) the curves for EH_ (u) for the different resolutions coincides.

in time in physical space using a fourth order Runge-Kutta scheme. The time step was

chosen appropriately to ensure numerical stability. To eliminate the aliasing errors in

this procedure, the two thirds rule is used so that the upper one third of wave modes is

discarded at each stage of the fourth order Runge-Kutta scheme.
In addition to LANS we also performed simulations using a dynamic SGS model (Ger-

mano, et al.(1994). Germano, et al.(1994) suggested a dynamic procedure in which the
model coefficient of an arbitrary functional relationship, selected to represent the subgrid

scale stress tensor, can be evaluated as part of the simulation. This procedure, applied to

the Smagorinsky eddy-viscosity model, has proven quite versatile and is used here as a
representative of a class of LES models. Tile filter aspect ratio in the dynamic model is a

free parameter, and the final result depends on the value of this parameter, particularly
in severe test cases such as the one considered here. In order to avoid introducing any

further arbitrary parameters, no averaging operation is performed on the model coeffi-

cients over the computational domain. However, the LES computations were repeated for

various filter aspect ratios, and the parameter that matched the best with the turbulence

decay of the DNS data was used in the computations of the next section.

4. Results

In this section, we present results of our numerical simulations of the LANS equations.
We first demonstrate the dispersive characteristic of the energy cascade in the LAE

equations.

4.1. Lagrangian-Averaged Euler equations

In section 2, we argued that the LAE equations redistribute the energy content among
the small scales through a nonlinear dispersive mechanism. This is illustrated in Fig. 1

where various energy norms in the LAE simulations (i.e., no viscous dissipation) are

contrasted against the energy norm in the Euler equations. The initial condition is the
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same as the one described in the next section for the viscous computations. As exp(,('ted,

the H 1 (-equivalent) norm of the energy for the LAE equations, given by

1

f [u.u + 2(_2 Defu. Defu] d3x, (4.1)E;;, (u) =

is a conserved quantity. In the case of periodic boundary conditions, this energy function
1 f u- (1 - ct2A)u. The value of EH1 depends on themay also be expressed as EHI =

initial condition as well as the parameter a. For given initial data and fixed a, on the
other hand, the L2 energy function

17EL2(U) = _ u.u d3x (4.2)

drops significantly from its normalized initial value of 0.5. It is precisely the quantity

EL2 (u) that we shall compare with the numerical simulation of Navier-Stokes equations.

Again, the absolute drop in EL: (u) depends on the initial velocity as well as the value of

a. Since EH 1(u) is constant along solutions of the LAE equations, any decay in EL2(U)

is followed by an increase in a2EL2 (Vu). After some initial transient all of the energy

norms saturate. We remark that, when a = 0, the H 1 energy norm (4.1) reduces to the
usual L 2 kinetic energy.

In a viscous computation the dispersive decay in EL=(u) is augmented by the vis-
cous decay in EL2(U) as the viscous effects remove energy from small scales. Viscous

computations are performed in the next section to quantify the nature of the viscous
decay.

In Fig. l(b) the effect of grid resolution on LAE simulations is shown. While the

value of EHI(U) is the same in both 483 and 643 runs, the L2 norm of u and Vu are

significantly different after an initial transient. Therefore, the dispersive decay in EL: (u)

strongly depends on the size of the computational domain. However, it is expected that

if the smallest resolved scale in the LAE simulations is located in a subinertial range

with low energy compared to the peak of the energy spectra, any variation of EL2 (u)
with the size of the computational domain would be small. This issue requires fm-ther

investigation by computations based on an initial field with a large inertial range.
One should note that the conservation of the H I norm is slightly sensitive to the ac-

curacy of the implemented numerical scheme. The fourth order Runge-Kutta has proved
to be adequate in our case. However, numerical experimentation has shown that lower-

order time integration schemes might result in a slight decay in the H I norm. All of the

reported computations in this study are performed using the same fourth order Runge-
Kutta scheme.

4.2. Decaying turbulence

The most widely used published data on decaying grid turbulence are due to Comte-

Bellot & Corrsin (1966) and (1971), which we will hereafter refer to as CBC. Their data

is well documented and has been used widely in the development of DNS, LES, and other
turbulence models.

The DNS computations in this study were carried out on the Hewlett-Packard Ex-

emplar V2500 at Caltech. The initial field is taken from Wray (1998). Wray provides a

filtered velocity field in physical space, derived from 5123 data by a sharp truncation in

Fourier space to 1283 . All of the computations performed in this study were started with
this data. The initial Taylor Reynolds number is Rex = 72.

The evolution of the energy spectrum as predicted by DNS using 1283 points is il-
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lustrated in Fig. 2. The energy of fully developed isotropic turbulence decays in time

while the scales of motion grow; the resulting Rex decreases with time. Consequently, a

well resolved, fully developed field will remain well resolved as it decays. On the other

hand, the integral scales grow in time and will eventually become comparable to the size

of the computational box. Since the computational box contains only a small sample

of the largest representable eddies, eventually the computation will suffer hom a lack
of sample in the energy-containing scales. Tile rather wide initial energy spectrum with

a peak around the eighth Fourier mode provides a harsh test case for any turbulence
model at such a resolution. As is the case with most subgrid models, the LANS model is

expected to perform better when the energy containing range is well resolved. In other

words, the model is expected to perform better when the spectral energy peaks at a lower
wave number. The simulation of CBC experiments at Rex = 72 used in this study barely

satisfies this criterion and provide a severe test case of the LANS turbulence modeling

capability. However, this does not imply that the developed inertial range is required for

the model to reach optimal performance.
The evolution of total kinetic energy (TKE) of the DNS data is contrasted against

various dynamic LES and LANS sinmlations in Fig. 3, for two resolutions: 483 and 643.
TKE's for DNS data, sharply filtered to the resolution of the LES and LANS computa-

tions, are also presented. The best match between the DNS data and the dynamic LES
results is achieved for a filter aspect ratio of 2 and 4 in the 483 and 643 calculations,

respectively. In the 64 a computation both LES and LANS satisfactorily predict the de-

cay rate. However, at the lower resolution of 483 both models underestimate the decay

rate, with the LANS model being more under-dissipative. It is clear that at such a low
resolution the energy-containing part of the spectrum is barely resolved. This is demon-

strated in Figs. 4-6 where the evolution of the energy spectrum of various computations

are presented. The pile-up of energy at higher wave numbers in the 483 runs indicates
insufficient dissipation of energy due to inadequate resolution. This is more pronounced

in the LANS computations where the model is heavily dependent on the nonlinear dis-

persive mechanism of the Lagrangian-averaged equations as opposed to the dissipative
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model in LES. For 64 a calculations the energy spectrum is predicted reasonably well by

both LANS and dynamic LES. LANS computations show better agreement for higher

wave numbers. At later times a dip at the peak of the energy' spectrum is observed,

which is more pronounced in LANS simulations. This might be due to the introduction

of the dispersive effects in the LANS equations at scales of the order of a. However, due

to the broad-band nature of the energy spectrum with the maximum of the spectrum

at a relatively high wavenumber, we could not move a far from the energy-containing

range. It is expected that in a higher Reynolds number flow where there is an extended
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FIGURE 6. The energy spectra at t = 3. See Fig. 4 for caption.

inertial range and, therefore, a larger gap between energy-containing scales and a scale,
this effect will be diminished. Existence of such a clearance between a scales and the

location of the energy peak requires resolving at least a portion of the subinertial range.

LES methods will, of course, also work better in such a situation.

5. Conclusions and future directions

We studied the Lagrangian-averaged Navier-Stokes (LANS) equations through numer-
ical simulations of isotropic decaying turbulence. Our conclusions here are made based on

the numerical simulations of CBC experiments. The initial energy spectrum at Re_ = 72

is broad and the peak of tile energy spectruln is around the eighth Fourier mode. Correct

prediction of the TKE decay rate and the corresponding spectra for such a broad-band

initial spectrum represents a difficult test case for any turbulence model.
We have delnonstrated the dispersive (not dissipative) nature of tile energy decay in
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the Lagrangian-averaged Euler (LAE) equations. This is the essence of the Lagrangian

averaging method, where the energy is removed fiom tile small scales while maintaining

tile cruc.ial features of the large scale flow using dispersive rather than dissipative mech-

anisms. The final ELa(U) level depends on the spectrum of the initial field, the size of
the computational box, and (_.

We found that, if a minimum resolution requirement (for tile CBC experiments, half

of the DNS resolution) is satisfied, then tile LANS equations provide a satisfactory tur-

bulence closure comparable with dynamic LES. The only free parameter in LANS simu-

lations is a length scale a which is representative of the spatial scale of the Lagrangian

averaging. However, for lower resolutions both LANS and dynamic LES show a pile-up

of energy at higher wave numbers. This indicates insufficient dissipation of energy due to
the lack of resolution. We should point out that, in LANS simulations of forced homo-

geneous turbulence, Chen, et al.(1999) observed a milder resolution requirement. The
harsher resolution requirement ill our case might be due to tile broad-band nature of tile

initial field for the CBC experiment.

Ally conclusion on the performance of tile LANS equations depends on the way that

the DNS data is compared with the results of LANS calculations. First of all, appropriate

interpretation of the Lagrangian averaging process of the DNS data is crucial for obtaining

the initial velocity field for LANS computations. The santo issue arises in comparing

LANS results with DNS data at later times. We considered a few different approaches.
Apart from truncation of the DNS data to the resolution of LANS simulations, we have

initialized LANS simulations by Hehnholtz filtering or spatial averaging of the DNS data.
For the CBC experiment we found that using the filter based on tile Helmholtz operator

or spatial averaging (top hat filter) resulted in a severe reduction of the initial resolved

kinetic energy to a fraction of that of a field truncated in Fourier space (i.e., using a
Fourier cut-off filter). We point out that such a reduction is independent of the model

used and diminishes the value of the tests. We therefore use a sharply truncated DNS

data as the initial velocity field (u) in LANS simulations.

Recently, Chen, et al.(1999) simulated a forced homogeneous turbulent flow and re-

ported favorable results using LANS equations. Here, we demonstrated the modeling
capabilities of LANS equations ill decaying turbulent flows. Apart from these satisfac-
tory results, LANS equations have many attractive theoretical features that make them

a promising candidate for more complicated problems. In this process the next natural
step is to test LANS models in anisotropie flows. Numerical simulation of channel flow

based on the anisotropic LANS equations is the topic of our future research.
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Non-locality of scale interactions in turbulent
shear flows

By F. Hersant_, B. Dubrulle_ AND M. Wang

The scale interactions in turbulent shear flow are evaluated using a channel flow DNS

database at ReT = 590. The velocity field is filtered using a sharp cut-off filter in the

Fourier space, and the relative magnitudes of tile advective terms in the small scale equa-

tions, derived from Navier-Stokes equations, are computed as a function of wavenumber.
We show that the interactions at small scales are non-local in the direction of the mean

flow, dominated by the advection of small scales by large scale vortices. This non-locality
of interactions suggests that the subgrid-scale model of Dubrulle and Nazarenko (1997)

for 2D turbulence is likely to be applicable to turbulent shear flows as well.

1. Introduction

Direct numerical sinmlation (DNS) based on the Navier-Stokes equations is only pos-

sible for relatively low Reynolds numbers. Therefore, filtering is often needed to capture

the large-scale structure of the flow, hoping that the effect of small scale fluctuations can

be more easily modeled. This is the basis for the classical large eddy simulations (LES) in

which the subgrid scale (SGS) stresses are calculated through a statistical prescription.

The most frequently used closure in LES is the Smagorinski model in which the SGS
stresses are modeled in terms of a turbulent eddy, viscosity with a model constant to be

calibrated for specific flows.
The presence of the unknown model constant makes this procedure inappropriate for

unfamiliar and non-measurable flows such as protoplanetary disks. Hence, it is desirable

to develop new models in which arbitrary parameters are eliminated or at least have

less impact on the dynamic evolution of the resolved scales. The dynamic SGS model of

Germano et al. (1991) provides one such example. It employs a test filter to calculate the
model constant as a function of time and position.

In 1997 Dubrulle and Nazarenko introduced an alternative subgrid scale model for

2D turbulence (hereafter referred to as DN model) based upon a generalization of the

Rapid Distortion Theory. This model relies on linearized Navier-Stokes equations forced

through the energy cascade mechanism. The assmnption underlying this model is that
the nonlinear interactions at small scales are mainly non-local and thus have to be treated

exactly. This contrasts with the classical Kolmogorov theory of turbulence in which the
main interactions are between comparable scales. In the DN model, the less important

local interactions are represented by a turbulent viscosity, which plays a secondary role

and can be neglected in some special situations (e.g. 2D turbulence).

Laval et al. (1999) implemented this model for 2D isotropic turbulence computa-

tions. The model gives a much cleaner treatment of the small scales than standard LES

CNRS, CEA/DAPNIA/SAp, CE Saclay, F-91191 Gif sur Yvette Cedex, France
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models and remains cheap in memory and computation time. In 3D homogeneous tur-

bulence, numerical tests have also been performed by Laval et al. (2000). They showed

that non-local interactions indeed dominate the dynamics, generating coherent struc-

tures and intermittency. The local interactions are responsible for energy saturation of

the structures and can be modeled by a simple turbulent viscosity.

In many astrophysical and geophysical flows, both 2D and 3D dynamics coexist: when

the rotation becomes dynamically important, i.e. for scales larger than the Taylor-

Proudman scale, the turbulent eddies have a 2D behavior. On the other hand, these

flows are characterized by a strong mean shear flow, which is not the case in the homoge-
neous turbulence studied by Laval et al. Intuitively, we would think that the presence of
this mean flow enhances the advection of the small scales and thus renders the non-local

approximation even better than in 3D homogeneous turbulence. We present here quan-
titative support of this idea based on a priori tests performed using a DNS database of

a turbulent channel flow at ReT = 590 (Moser et al. (1999)).

2. The DubruUe and Nazarenko model

The Navier-Stokes equations for an incompressible flow are:

O_v_+ vjOjvi = -1-oip + _ojo_v_
P

OiVi = 0 (2.1)

where vi is the velocity component in the i th direction, p the pressure, p the (constant)

density, and v the kinematic viscosity. As in standard LES, we define resolved and subgrid
scale quantities using a filter function G(x, x') :

vi(x,t) = V_(x, t)+ vi(x,t )

v,(×, t) - _(x, t_ = f G(x, xt)vi(x t, t)dx' (2.2)

where I_] and v_ are the resolved and subgrid scale velocity components in the i th di-

rection. The filter function used in the present report is a sharp cut-off in the Fourier
space.

Using this filtering operation, one obtains two coupled sets of equations: one for the

resolved scales and the other for the unresolved (subgrid) scales. The resolved scale

equations are obtained by a mere filtering of Eq. (2.1):

o,v, + ojv, vj + o_vi_ + O_v:_ + O_v',_

= -lo, p + .ojojE
P

0,V_ = 0 (2.3)

The subgrid scale equations are obtained by subtracting equations (2.3) from (2.1):

o,_: + o_y,y_ + oj_;_ + O_v:Vj+ Ojv;v;

- o_v,¢5 - o_v,v_ - O_v:yj- Oy:v}

= - 1-O,p'+ .ojojv_
o

O,v I = 0 (2.4)
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Several terms contribute to the nonlinear interactions: non-local terms involving the

product of a resolved scale and a subgrid scale component, and a local term involving

two subgrid scale components. The essence of subgrid scale modeling is to keep only the
non-local terms and to model the local term by a turbulent viscosity.

The savings in memory achieved with this kind of model are not obvious since all the
scales are computed. However the linearity of the subgrid scale equations allows several

simplifications. First, they may be decomposed into localized linear modes, which can

exploit the intermittency and inhomogeneity of the small scales, thereby decreasing the
number of modes needed to reconstruct the subgrid field. Also, the linearity enables the

use of semi-Lagrangian schemes of integration, which provides a significant reduction

of the computational cost via an increase of the integration time step (see Laval et al.

(1999) for details of 2D simulations).

3. A priori tests in a channel flow

Carlier et al. (2000) have studied the relative importance of local and non-local terms

in a high Reynolds number wind tunnel boundary layer at a momentum-thickness based

Reynolds number equal to 20600. The results are displayed in Fig. 1, which shows the

power spectra of the four instantaneous Reynolds stress components involving vl and v2,
defined as P(vlv2) = Iv-_'e [2 where the caret denotes Fourier transform in the plane paral-

lel to the wall at y+ = 100. The horizontal axis represents the dimensionless wavenumber

k = (k 2 + k2) 1/2 (normalized by 1/y). One sees that for wavenumbers larger than the
cut-off, wavenumber (= 300m-a), The non-local term _.qv_ indeed dominates over the

other terms by several orders of magnitudes. However, the hot wire anemometry tech-

nique used in the experiment prevents both the measurements of other components of
the velocity field and the computation of spatial derivatives, thereby preventing a direct
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check of the non-local hypothesis. It is, therefore, of interest to complement their study
via a priori tests performed using a DNS database.

The database used in the present study is from the channel flow DNS of Moser et aL

(1999) at Rer = 590 based on the friction velocity and channel half-width. The DNS was

conducted on a grid of 384 x 257' x 384, covering a computational box of size 2rr, 2, rr in the

streamwise (xl), wall-normal (x2 or y), and spanwise (xa) directions, respectively. All the

variables used are dimensionless, with velocities normalized by the mean friction velocity
and spatial coordinates normalized by the channel half-width. The strong inhomogeneity

of the mesh in the wall-normal direction prevents the use of Fourier analysis in that

direction. Therefore, filtering was performed only in the planes parallel to the wall. A

sharp cut-off filter with cut-off wavenumber k = 30 was used to separate large and small
scales.

Our analysis was performed in two steps: first, we computed the four components
of vlv2 and their power spectra P(v]v2) (= Iv_l 2) as a function of wavenumber k =

(k] + k_)_/2, analogous to those plotted in Fig. 1, thereby, allowing an estimate of the

influence of the Reynolds number. The results are presented in Fig. 2. Then, we computed

the advective terms in the three subgrid scale equations (2.4), complete with the spatial

derivatives and summation over indices. The derivatives were calculated using spectral

methods (Fourier in the streamwise and spanwise directions, and Chebychev in the wall-

normal direction) consistent with the original DNS. The results, again expressed in terms

of their wavenumber spectra P(vjOjvi) = Ivj_jvi] 2, are shown in Figs. 3, 4 and 5. Notice

that although the examples shown in Figs. 2-5 are for y+ = 50, the same cah:ulations

have been repeated for y+ = 20 and y+ = 100 as well, and the results are found to be
very similar to those depicted in the figures.

From a comparison of Figs. 1 and 2, one sees that the main influence of the higher
Reynolds number (Fig. 1) is to increase the dominance of the non-local term with respect

to the others. This is a consequence of the increased scale separation, which has been
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predicted and discussed in Dubrulle & Nazarenko (1997). When the other components
of the velocity fields and the derivatives are taken into account, one may note that the

non-local hypothesis remains valid for the subgrid scale equations (2.4) in the streamwise

(Fig. 3) and spanwise (Fig. 5) directions, while it becomes clearly violated for the equation
in the direction normal to the wall (Fig. 4). This is consistent with the belief that the
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presence of a mean flow (here in the streamwise direction) favors the development of non-
local interactions even at moderate Reynolds numbers. In the absence of a mean flow

(like in the direction normal to the wall, or in 3D homogeneous turbulence), the local

terms need to be taken into account. On the whole, these results suggest that, in the

streamwise and spanwise directions, the local interaction terms could be safely neglected
(as in 2D turbulence), while in the direction normal to the wall, they should I_e modeled
by a turbulent viscosity as in 3D homogeneous turbulence.

4. Conclusions

We have shown that, based on a priori tests in a channel flow, the model developed by

Dubrulle & Nazarenko (1997) should be applicable in turbulent shear flows. As expected,

nonlinear interactions in the presence of a mean flow are mainly dominated by the advec-

tion of small scales by the large scale motions, including the mean stream. The remaining

interactions only involve a small fraction of the flow energy, and their dynamics can be
modeled by, for example, a turbulent viscosity.

This is of great interest for protoplanetary disks. In fact accretion disks are believed

to have many similarities with Couette-Taylor flows (see e.g. Richard & Zahn (1999)).
The presence of rotation may induce some differences. However, the rotation tends to
force the large scale motions to have a 2D behavior. Given the success of the Laval et

al. (1999) model for 2D turbulence, it is hoped that the model will be also valid in 3D

rotating shear flows. Obviously, the present a priori test results are very encouraging, but
further investigations are required to evaluate the influence of rotation more precisely.

Dynamical tests are also needed to validate this procedure for 3D turbulence in complex
geometries.
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The objective of this study is to investigate the use of the second generation bi-orthogonal

wavelet transform for the field decomposition in the Coherent Vortex Simulation of tur-

bulent flows. The performances of the bi-orthogonal second generation wavelet transform

and the orthogonal wavelet transform using Daubechies wavelets with the same number

of vanishing moments are compared in a priori tests using a spectral direct numerical

simulation (DNS) database of isotropic turbulence fields: 2563 and 5123 DNS of forced

homogeneous turbulence (Rex = 168) and 2563 and 5123 DNS of decaying homogeneous
turbulence (Re_ = 55). It is found that bi-orthogonal second generation wavelets can
be used for coherent vortex extraction. The results of a priori tests indicate that second

generation wavelets have better compression and the residual field is closer to Gaussian.
However, it was found that the use of second generation wavelets results in an integral

length scale for the incoherent part that is larger than that derived from orthogonal

wavelets. A way of dealing with this difficulty is suggested.

1. Introduction

A new adaptive second generation wavelet collocation method for DNS of turbulent

flows has recently been developed (Vasilyev & Bowman (2000), Kevlahan et al. (2000)).

The adaptive wavelet collocation method is appropriate for high Reynolds number tur-
bulence since wavelets (which are localized in both space and scale) adapt the numeri-

cal resolution naturally to the intermittent structure of turbulence at small scales. The

wavelet method thus allows turbulent flows to be calculated with a greatly reduced num-

ber of modes with little loss in accuracy. Furthermore, the computational cost of the

algorithm is independent of the dimensionality of the problem and is O(N'), where N" is
the total number of collocation points actually used in the simulation.

The efficiency of the adaptive wavelet collocation method can be greatly enhanced by

combining it with the recently developed Coherent Vortex Simulation (CVS) approach

(Farge et al. (1999)), which is closely related to the standard large eddy simulation

(LES) method. In contrast to LES, in which the velocity field is decomposed into large-
and small-scale fields, in CVS the velocity field is decomposed into coherent (filtered)

and incoherent (residual) fields. The filtered scales, which represent the coherent non-

Gaussian part of the flow, are obtained numerically from the filtered vortieity-transport

equation, while the effect of the residual scales, which represent the incoherent Gaussian

part of the flow, needs to be modeled. The success of the CVS approach depends on how
close the residual field is to Gaussian white noise and how few modes are required for

t University of Missouri-Columbia
_; NASA Ames Reserach Center, Moffett Field, CA
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the filtered field representation. It was shown by Donoho (1993) that wavelet coeffici_nl

thresholding is an optimal method for separating Gaussian white noise fr()m a signal. Thus

the filtering can be performed in wavelet space using wavelet coefficient tbresholding,
which can be considered as a non-linear filter that depends on each flow realization. This

wavelet filtering is achieved by performing the following three steps:

1. Perform the forward wavelet transform of ,_.

2. Set to zero those wavelet coefficients, whose magnitude is below the given a priori
prescribed threshold e, i.e. [Iwl]2 <_ e, where c_ is the wavelet transform of 5.

3. Apply the inverse wavelet transform.

As a result of this operation, the filtered vorticity field can be captured by a small fraction

of the wavelet coefficients. The anticipated advantages of CVS over current methods

are, first, the use of wavelet bases to significantly compress the vorticity field and so

require simulation of only a small fraction of the degrees of freedom (those that contain a

significant amount of energy and enstrophy), and second, one can presumably model the
discarded modes more accurately than in LES since they are closer to Ganssian white

noise than those resulting from the linear low pass filters used in LES. Initial work done

by Farge et al. (1999) on a two-dimensional CVS method shows significant potential.

It is anticipated that CVS applied to three-dimensional turbulent flows will provide

substantial improvements in computational speed and accuracy over existing methods.
The final goal of our work is to develop a 3D CVS code that is able to simulate realistic

scientific and engineering problems in complex domains. An adaptive wavelet collocation

solver (Vasilyev & Bowman (2000), Kevlahan et al. (2000)) will be used to numerically
solve the CVS equations on the adaptive grid. This adaptive wavelet collocation solver

uses second generation bi-orthogonal wavelets, enabling it to solve problems in complex
domains. It would be logical to use the same second generation wavelets for both the

vorticity field filtering and the wavelet collocation solver. However, the use of second

generation bi-orthogonal wavelets for coherent field extraction has not been explored up
to now. Therefore, the objective of this study is to investigate in a priori tests the use of
these wavelets only for the filtering of the vorticity field for coherent vortex extraction.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to

second generation wavelets. The CVS approach is then introduced in Section 3. Finally, in
Section 4 results are presented of a parametric study of two different wavelet transforms
applied to both forced and decaying homogeneous turbulence fields.

2. Second generation wavelets

Wavelets are basis functions which are localized in both physical space (due to their
finite support) and wavenumber space (e.g. Fig. 1). In contrast, the Fourier transform is

based on functions (sines and cosines) that are well localized in frequency but do not pro-

vide localization in physical space due to their global support. Because of this space/scale

localization, the wavelet transform provides both spatial and scale (frequency) informa-
tion while the Fourier transform only provides frequency information.

Although the wavelet transform with its space/scale localization is an attractive tech-

nique to apply to the solution of problems with localized structures such as the sim-

ulation of turbulent flows, traditional wavelet transforms have difficulties dealing with
boundaries. Traditionally, wavelets _b_ are defined as translates and dilates of one basic

wavelet _b, i.e. ¢_ (x) = _b(2Jx - k). These first generation wavelets are defined either in
infinite or periodic domains.
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Second generation wavelets (Sweldens (1996), Sweldens (1998)) are a generalization

of first generation wavelets (Daubechies (1988), Cohen et al. (1992)) that supplies the

necessary freedom to deal with complex geometries, arbitrary boundary conditions, and

irregular sampling intervals. Second generation wavelets form a Reisz basis for some

function space, with the wavelets being local in both space and frequency and often

having many vanishing polynomial moments, but without the translation and dilation
invariance of their first generation cousins. Despite the loss of these two fundamental

properties of wavelet bases, second generation wavelets retain many of the useful features

of first generation wavelets, including a fast O(N) transform.
The construction of second generation wavelets is based on the lifting scheme that

is discussed in detail in Sweldens (1996), Sweldens (1998). Here we just summarize the

main advantages of second generation wavelets:

1. Wavelets are constructed in the spatial domain and can be custom designed for

complex multi-dimensional domains and irregular sampling intervals.

2. No auxiliary memory is required and the original signal can be replaced with its

wavelet transform.

3. The second generation wavelet transform is a factor of two faster than the first.

4. With lifting, the inverse wavelet transform is constructed by simply reversing the

order of operations and interchanging addition and subtraction operations.

5. The programming of the second generation wavelet transform is considerably sim-

pler.

6. Second generation wavelets are naturally suitatfle for wavelet collocation meth-

ods, which have been shown to be superior to the wavelet Galerkin approach in

handling general boundary conditions and nonlinearities in the equations.

For this study we use a set of second generation wavelets known in the literature

as lifted interpolating (LI), or Donoho, wavelets (Sweldens (1996), Vasilyev & Bowman

(2000)). In particular, a priori tests are done using the lifted interpolating wavelet, here-
after called LI3, that has five vanishing polynomial moments. The LI3 wavelet and its

Fourier transform are shown in Fig. 1. For a more in-depth discussion on the construction

of these wavelets the reader is referred to the following papers: Sweldens (1996), Sweldens

(1998), Vasilyev & Bowman (2000). For a more general discussion of wavelets the follow-

ing references can be consulted: Daubechies (1992), Mallat (1999).

3. Coherent Vortex Simulation

In a CVS the vortieity field is separated into two parts using a wavelet thresholding

filter:
= .3> + _< (a.1)

where v_> is the filtered part of the flow defined on an adaptive grid and a__< is the
Localized Residual Scales (LRS) fieht that is made as close to Gaussian white noise as

possible. We use the term Localized Residual Scales to highlight the fact that there is no

particular scale associated with the residual field, i.e., the spectral content of the LRS
varies in time and location, unlike in LES of a homogeneous flow.

The formulation for CVS then begins with the vorticity-transport equation:

0'_ _ (._. V)Z + (Z. V)V + ,'V _. (3.2)
Ot
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FIGURE 1. Lifted interpolating wavelet _, and its Fourier transfornl q2(_).

As in LES, after application of the wavelet filter we obtain the following CVS equation
that describes the evolution of the filtered field:

05> _ (V>. V)_> + (5>. V)V> + uV2,_> + f (3.3)Ot

where

f = [(9-V)_]> - [(_. 9)9]> - (9>. V)Z> + (Z> • V)V> (3.4)

is the LRS forcing that needs to be modeled. The localized nature of the LRS will

have to be considered in defining residual-scale models for use with CVS. It has been

shown that, when a non-linear wavelet thresholding filter is applied to a moderately

high Reynolds number isotropic turbulence field, the residual field is closer to being
statistically Gaussian than when a Fourier cutoff filter with the same number of modes

is used. This has been shown in Farge et al. (1999) in 2D and will be shown in Section

4 below in 3D. Thus it is expected that the LRS can be modeled more accurately than

for Fourier filtering, but this has not been proven and is a current topic of research.

Solution of the filtered vorticity equation on an adaptive grid can be done using any
appropriate solution method. In Farge et al. (1999) a 2D CVS method was implemented

using an adaptive wavelet-vaguelette algorithm (FrShlich & Schneider (1997)). In our
work we implemented a 3D CVS method using an adaptive wavelet collocation method

discussed in Vasilyev & Bowman (2000), Kevlahan et al. (2000) that has been shown to

work welt in 2D flows and can be extended to 3D with little modification. This solver uses

the second generation bi-orthogonal LI wavelets discussed in Section 2 and is capable of
solving problems in complex domains.

The adaptive wavelet collocation method is ideally suited for the CVS of turbulent

flows since every wavelet is uniquely associated with a collocation point. Thus the grid
adaptation can be based on the same criterion as in coherent vortex extraction, i.e., at

any given time the computational grid consists of points corresponding to wavelets whose
coefficients are above an optimal CVS threshold, i.e. we do not retain those collocation

points whose wavelet coefficients were set to zero in the wavelet filtering operation. With
this adaptation strategy a solution is obtained on a grid that "tracks" the coherent
vortices.

The CVS method requires at least two major operations per time step:

1. Apply the wavelet thresholding filter to define the adaptive grid.
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FIGURE 2. Energy and enstrophy spectra of forced isotropic turbulence for data sets Fe_6 and
Fs_e. Spectra of the full field: (_). Spectra of the LRS field after optimal wavelet compres-
sion using DB6 wavelets: (.... ) and LI3 wavelets: (.... ). The Fourier cutoff filter with
compression equivalent to optimal DB6 wavelet filter: (-- + "" ) and to optimal LI3 wavelet

filter: (-- o -- ).

2. Numerically solve Eq. 3.3 on the adaptive grid.

Using the same wavelets for these two steps would be most computionally efficient. This is

why we are interested in investigating the use of second generation bi-orthogonal wavelets

for coherent vortex extraction.

Although in this paper we do not discuss the solution of the wavelet filtered vorticity

equation (3.3), it is good to point out that since the CVS equations are solved on an

adaptive grid, we cannot use spectral methods for the solution of the Poisson equation
that relates the vorticity field to the velocity field. The development of an efficient wavelet

collocation based method for the solution of the Poisson equation on an adaptive grid is

currently a subject of study.
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4. Results and discussion

For the CVS method to work, we want to find the optimal value of e such that the

wavelet filter decomposes the vorticity field into a filtered field that contains all th(_ co-

herent vortices of significant energy and an LRS field that is as close to Gaussian white

noise as possible. One way to find the optimal value of e is to use Donoho's de-noising
theorem (Donoho (1993)) that states that if there is a Gaussian white-noise component

in the vorticity field and somehow we know its variance, we can extract it using wavelet

thresholding with orthogonal wavelets. Donoho's de-noising theorem says that the thresh-

old required to extract the Gaussian white-noise component is eDo,oho = X/2a 2 log(N),
where o 2 is the variance of the Gaussian white noise and N is the number of points in the

field. However, the variance of the Gaussian white-noise component of the vorticity field

is not known. One way to find the LRS field with maximum Gaussianity is to iterate

on c,+l = V/2a_Rs, log(N), with aLRSo taken as the variance of the flfil field (Farge

et al. (1999)). If there exists an LRS field that is Gaussian white noise, then the iterative

process should converge to eDonoho. However, since Donoho's theorem does not directly
apply to bi-orthogonal wavelets, another way to find the optimal e_needs to be found.

In order to prove the existence of an optimal value for e for second generation wavelets

and, possibly, find an efficient way of finding it, a series of parametric studies were

performed by varying ( to achieve a range of compression from 0% to 100%. The results

for the second generation bi-orthogonal (LI) wavelets were compared to the orthogonal

Daubechies DB6 wavelets (Daubechies (1992)). Both of these wavelets have five vanishing

moments and an effective filter length of 12. We carried out these parametric studies using
a number of forced and decaying isotropic turbulence fields from a database of spectral

DNS. Due to space restrictions the results from only two representative forced isotropic
turbulence fields F.z56 and F512 (ReA = 168) will be presented in detail. We also will

refer to two decaying isotropic turbulence fields CBC256 and CBCsv2 (Re_ = 55). More

detailed information about these data sets can be found in Jimenez & Wray (1993).

The energy and enstrophy spectra of data sets F256 and F51_ are shown in Fig. 2. Fig-
ure 3 shows various statistical quantities (as a function of compression) of the filtered and

LRS fields after wavelet thresholding with DB6 and LI3 wavelets. In this paper we define
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the compression as _- × 100%, where N> is the number of retained wavelet coefficients

for a given threshold _. In Fig. 3a we can see that in each case there is a minimum for

the flatness. This minimum is interpreted as the optimal wavelet compression of the field

in terms of Gaussianity of the LRS field. Figure 3b shows the scaled Lo_ error between

the PDF of the LRS field and a Gaussian PDF with the same mean and variance. It can

be seen that the nfinima in Figs. 3a and 3b coincide, showing that the flatness is a good
indicator of the Gaussianity of the field. It can also be seen from these plots that the

optimal compression of both felds is better for the LI3 wavelets than the DB6 wavelets.

However, this does not show the whole story. In Fig. 3c we see that the total kinetic

energy in the LRS field is greater for both fields when the LI3 wavelets are used, while

the difference is much less if we look at the total enstrophy in Fig. 3d. It is significant
that the velocity (Fig. 3e) and vorticity (Fig. 30 integral length scales of the LRS field

are considerably larger for the LI3 wavelets. This indicates that the LI3 wavelets are ex-

tracting a more Gaussian LRS field at a higher optimal compression ratio, but this LRS

field is more coherent than that fl'om DB6 wavelets. Since _he goal of the CVS approach
is to extract an incoherent Gaussian white noise, this is considered unfavorable for the
LI3 wavelets.

It is also interesting to note that for the LI3 wavelets the optimal compression is con-

siderably greater for the F512 data set when compared to the F256 case (see Figs. 2a and

2b). In fact, the number of wavelets used to represent the filtered fields is approximately
the same for both F256 and F_12 data sets, which means that additional scales are ap-
proximated with virtually no extra cost. However, this is not true for the DB6 wavelet
fiiter.

Figure 4 shows the PDF of vorticity for data set F256 and the Gaussian PDF with the

same mean and variance. In Fig. 5, for data set F256, the PDFs of the filtered and LRS

vorticity fields at optimum wavelet compression using DB6 wavelets are compared to
those from a Fourier cutoff filter that retains the same number of modes. The difference

in the Gaussianity of the LRS field of the two filters can most clearly be seen in the tails.
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With both LI3 and DB6 wavelet thresholding the LRS field is clearly more Gaussian in

the tails than the residuals from the Fourier cutoff filter. In both cases there is a large

difference around zero between the PDF of the LRS field and the corresponding Gaussian

PDF; this difference dominates the L_ error.
As a possible way to improve the performance of the LI3 wavelets for coherent vortex

extraction, we studied the effect of diminishing the number of multiresolution levels used

in the wavelet transform. For a resolution of 5123, the maximum number of levels that

can be used with the LI3 and DB6 wavelets before tt_e support of the scaling functions

start to overlap at the coarsest level is 6 (see Daubechies (1992) for a more in-depth

discussion of the wavelet transform). Figure 7 shows the energy and enstrophy spectra

for data set F512 and the LRS fields after optimal wavelet compression using DB6 wavelets

with 6 levels in the transform, as in Fig. 3. Also shown are the energy and enstrophy

spectra of the LRS fields after optimal wavelet compression using LI3 wavelets with 2
through 6 levels of resolution. Note that, as the number of levels of resolution used in the
LI3 wavelet transform decreases, the LRS field contains less energy and approaches the

energy retained by the DB6 wavelet filter. In Fig. 8 we compare the the same statistics
as we did in Fig. 3 for the DB6 wavelet transform to the LI3 wavelet transform with a

range of levels of resolution. It can be easily seen in Figs. 83 and 8b that as the number of
levels used in the wavelet transform decreases, the LRS field becomes less Gaussian. We

also see that the LI3 wavelet transform with four levels results in a LRS field with better

Gaussianity (compared to the DB6 wavelet filter) with an optimal compression ratio

of 96% vs. 60% for the DB6 wavelet filter. Comparing the total energy and enstrophy

(Figs. 8c and 8d) for the LI3 wavelet transform with four levels of resolution to the DB6
wavelet transform, it can be clearly seen that th_ difference in total kinetic energy is

minimal and total enstrophy is almost identical. An interesting trend can be seen in the

velocity (Fig. 8e) and vorticity (Fig. 8f) integral length scales: using fewer levels in the
LI3 wavelet transform results in less coherence of the LRS field.

Finally, let us discuss the application of Donoho's de-noising theorem to find the opti-
mal wavelet compression using DB6 orthogonal wavelets. Figure 9 shows the normalized

threshold coefficient (eDonoho/e-) derived from Donoho's de-noising theorem for the LRS

field vs. the % compression of the field. Recall, that a given vorticity field eDonoho, which

is a function of the variance of the LRS field, is uniquely defined by the value e used in

wavelet filter. The solid vertical lines show the optimal compression as determined by the

minimum flatness and L_ error. We can see that because the LRS fields are never really

Gaussian white noise, the optimal compression and the points where eDonoho/e = 1.0

do not coincide. In fact, for the decaying isotropic turbulence data sets 6B6256 and

CBC512, which have a lower Re_ (Re_ = 55), eDo_oho/e never reaches 1.0. We have also

superimposed vertical lines that show the optimal compression ratio obtained if Donoho's

de-noising theorem is applied using the variance of the full field. We can see that this
results in a much higher compression than at the point of maximum Gaussianity (see

Fig. 3).

5. Conclusions

The performance of the bi-orthogonal second generation wavelet transform and the

orthogonal wavelet transform using Daubechies wavelets with the same number of van-

ishing moments is compared in a priori tests using a spectral DNS database of isotropic
turbulence fields: 2563 and 5123 DNS of forced homogeneous turbulence (Rex = 168)

and 2563 and 5123 DNS of decaying homogeneous turbulence (Rex = 55). The results of
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these a priori tests indicate that lifted interpolating bi-orthogonal wavelets are able to

extract a more Gaussian LRS field at a higher optimal compression ratio than orthog-

onal DB wavelets. However tile extracted LRS field is more coherent than when using
orthogonal DB wavelets. This problem can be overcome by reducing the number of levels

of resolution in the wavelet transform. In addition, it was found that the optimal wavelet

compression did not coincide with the theoretical compression predicted by Donoho's
de-noising theorem. The most probable explanation for this is that the LRS field never
actually becomes Gaussian white noise.

Future work in this area will include comparing the second generation wavelets wavelets

to other orthogonal wavelets and implementing the CVS approach in the adaptive second
generation wavelet collocation method.
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CVS decomposition of 3D homogeneous
turbulence using orthogonal wavelets

By Marie Farge_, Kai Schneider:_, Giulio Pellegrino¶,
A. A. Wrayll AND R. S. Rogalloll

This paper compares the filtering used in Coherent Vortex Simulation (CVS) decom-

position with an orthogonal wavelet basis, with the Proper Orthogonal Decomposition

(POD) or Fourier filtering. Both methods are applied to a field of DNS data of 3D forced

homogeneous isotropic turbulence at microscale Reynolds number R_ = 168. We show

that, with only a%N retained modes, CVS filtering separates the coherent vortex tubes
from the incoherent background flow. The latter is structureless, has an equipartition

energy spectrum, and has a Gaussian velocity probability distribution function (PDF)

and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract
the coherent vortex tubes cleanly and leaves organized structures in the residual high-

wavenumber modes whose PDFs are stretched exponentials for both the velocity and the

vorticity.

1. Introduction

Since the work presented in this paper has been performed at NASA-Ames, we recall

the comments on turbulence research made by Hugh L. Dryden, the first director of

NACA (later NASA) (Dryden (1948)).

Dryden begins his paper by saying:
There have been no notable advances in the theory of fully-developed turbulent mo-

tion during the last decade. [...] In the period 1934-1938 Taylor developed his statistical

theory of turbulence, which was so fruitful in treating the problem of isotropic turbu-
lence. Von Kdrmdn extended the theory, clothed it in more elegant mathematical form,

and attempted, with incomplete success, to treat the problem of shear flow. [...] At the

Fifth International Congress of Applied Mechanics in 1938 [...] Tollmien and Prandtl

suggested that the turbulent fluctuations might consist of two components, one derivable

from a harmonic function and the other satisfying an equation of the heat conduction

type, i.e. a nondiffusive and a diffusive component or viscosity independent and viscosity

dependent type.
Tollmien and Prandtl's suggestion to split the turbulent fluctuations into non-diffusive

and diffusive components is very similar to the concept behind CVS which we introduced

in Farge, Schneider & Kevlahan (1999). CVS tracks the nonlinear dynamics using an

adaptive wavelet basis which captures the regions of strong vorticity gradients at all

scales (Schneider Kevlahan & Farge (1997), Schneider & Farge (1998)) and discards the
diffusive components which have reached a statistical equilibrium as characterized by

Laboratoire de Mdt_orologie Dynamique, Ecole Normale Sup_rieure, Paris, France
_ Centre de Mathdmatiques et d'Informatique, Universit4 de Provence, Maxseille, France
¶ Institfit fiir Chemische Technik, Universitiit Karlsruhe (TH), Germany
II NASA Ames Research Center, Moffett Field, CA
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a Gaussian velocity probability distribution and energy equipartition spectrum (Farge,
Schneider & Kevlahan (1999), Farge & Schneider (2000)). This will be shown in this
paper.

Later, Dryden affirms that:

The mixing length concept seems wholly inadequate [...], the "mean free path", mixing
length, or scale of the turbulent processes is large compared with the thickness of the

boundary layer. Considerable masses of fluid move as more or less coherent units. The

process cannot be smoothed by averagin 9 over a small volume because it is not possible to

choose dimensions small compared with a single fluid element. The mixing length idea,
that the turbulent fluctuations and the turbulent shear stress are directly related to the

mean speed at a point and its derivatives at that point, must be abandoned. Shall the

flow then be regarded as a mean flow that merely tran._ports and distorts large eddies
superposed on the flow, these eddies being of varying size and intensity?

This comment of Dryden, stating that the turbulent flows are composed of coherent

units of varying size and intensity which cannot be smoothed by averaging, supports our

proposal for using the wavelet representation to study turbulent flows (Farge & Rabreau
(1988), Farge (1992)). We showed, using the continuous wavelet transform, that coherent

vortices in two-dimensional turbulent flows are multiscale eddies with activity covering
the entire inertial range. Later on, during the CTR Summer Program 1990, we confirmed

that the same is true for three-dimensional turbulent flows and that coherent vortices are

responsible for the for flow intermittency (Farge, Guezennec, Ho & Meneveau (1990)).
Finally Dryden concludes by saying that:

The rapidly developing theory of random functions (Bass (1945)) may possibly form

the mathematical framework of an improved theory of turbulence. However it is necessary

to separate the random processes from the non-random processes. It is not yet fully clear
what the random elements are in turbulent flows. The experimental results described

suggest that the ideas of Tollmien and Prandtl, that the measured fluctuations include both

random and non-random elements, are correct, but as yet there is no known procedure
either experimental or theoretical for separating them.

Over the last ten years (Farge (1992), Farge, Goirand, Meyer, Pascal & Wickerhaiiser

(1992), Farge, Schneider & Kevlahan (1999)), we have developed the filtering process that

forms the basis of the CVS method to separate the turbulent fluctuations into organized

and random components. It is based on a nonlinear filtering of the vorticity projected on
an orthogonal wavelet basis. We derived this procedure using theorems of Donoho and

Johnstone, proving optimality of the wavelet representation for denoising signals in the

presence of Gaussian white noise, in the sense that wavelet-based estimators minimize the

maximum L2-error for functions with inhomogeneous regularity(Donoho (1993), Donoho
& Johnstone (1994)).

In this paper we use CVS filtering to decompose a 3D forced homogeneous isotropic
turbulent flow into organized and random components. The microscale Reynolds number
is Ra = 168 and the simulation has resolution N = 256 _.

2. CVS decomposition

We consider the vorticity field _(_) = V x _7, computed at resolution N = 23J, N

being the number of grid points and J the number of octaves in each of the three spatial

directions. Each component is developed into an orthogonal wavelet series with largest

scale l,,,_ = 2° and smallest scale l,nin = 2J-1 using a 3D multi-resolution analysis
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physical space, right: in Fourier space.)

(MRA) (Daubechies (1992), Farge (1992)):

J-I 2J-i 2 "/-1 2"/-I 2_-i

= 50,0,0 + E E Z Z E
j=0 i==O iu=O i==O /_=1

with Cj,i.,ivi,i. (x) = Cj,i. (x) Cj,i_ (Y) Cj,i. (z), and

¢j,i.(x) Cj,i_(Y) Cj,i.(z) ; /_ = 1 ,

Cj,_.(_) ¢j,,_(y) Cj,. (z) ; . = 2 ,
Cj,i.(x)¢j,iv(y)_j,i.(z) ; #=3 ,

_/_e. . • (X) -_ _)j,i= (X) Cj,i v (y) _j,i= (Z) ; p = 4 ,

r.]lt z _ly _= " _j,i. (x) Cj,i_ (Y) Cj,i. (z) ; /_ = 5

Cj,,. (z) ¢j,_(y) _j,. (z) ; _ = 6 ,
_,j,_.(_) %,.(y) Cj,,. (z) ; _ = 7 ,

, (2.1)

(2.2)

where Cj,i and Cj,i are the one-dimensional scaling function (see Fig. 1 top) and the

corresponding wavelet (see Fig. 1 bottom), respectively. Due to the orthogonality, the

sealing coefficients are given by cOo,o,o = (w, ¢o,o,o) and the wavelet coefficients are given

by -0 = (h), _)jlJi=,iy,i,), where (., .) denotes the L2-inner product.
OJ j,i= ,i v ,i,

For the orthogonal wavelet basis we use Coiflets 12 (Daubechies (1992)), i.e. wavelets

with M = 4 vanishing moments and a filter length of 3M = 12 (see Fig. 1 bottom). The

advantage of the Coiflets is that they are almost symmetric and that the corresponding

scaling functions (see Fig. 1 top) have also M vanishing moments.
We then split the vorticity field into coherent vorticity tJc (_) and incoherent vorticity

07/(Z) by applying nonlinear thresholding to the wavelet coefficients. The choice of the
threshold value e is based on theorems derived by Donoho and Johnstone (Donoho (1993),

Donoho & Johnstone (1994)) and is e = (4/3Z log10 N) 1/2. Note that e only depends on

the total enstrophy Z and the number of grid points N, and there are no adjustable
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FIGURE 2. Total field: vorticity modulus (isosurfaces ]_[ = 3a, 4a, 5a, a being the variance).

parameters. The coherent vorticity field Jc is reconstructed from the wavelet coefficients

whose modulus is larger than e and the incoherent vorticity field _I from the wavelet

coefficients whose modulus is smaller than or equal to e. The two fields thus obtained, _c
and a_l, are orthogonal, which ensures separation of the total enstrophy into Z = Zc + Zl
because the interaction term (_c, _l) vanishes.

Finally we use the Biot-Savart law 17 = V x (V-2a_) to reconstruct the coherent (17c)

and incoherent 171 velocity fields from the corresponding vortices. Since wavelets are

almost eigenfunctions of the Biot-Savart kernel (Daubechies (1992)), i.e. their localization

in both physical and spectral space is well preserved (see Fig. 1), the total energy may

be written E = Ec + E1 - _, with E = (17, 17) and ¢ < 0.6%E (see Table I).
The implementation of the CVS decomposition is based on the fast wavelet transform

of each vorticity component, thresholding of the coefficients, and the inverse fast wavelet

transform for the reconstruction of the coherent and incoherent vortices. The computa-

tional cost of the fast wavelet transform is O(N), where N is the number of grid points.

The constant of the leading order term corresponds to the filter length 3M and depends
on the wavelet we use.

3. Application to 3D homogeneous turbulence

We now apply the CVS decomposition to 3D forced homogeneous isotropic turbulence,

computed by direct numerical simulation (DNS) at microscale Reynolds number RA =

150 with resolution N = 2563 (for details see Jimenez & Wray (1993)).
In Fig. 2 we plot the modulus of the vorticity fluctuations in the total flow field on a

643 subcube. We observe that the field contains well defined vortex tubes, as has been

previously observed in laboratory and numerical experiments (Douady, Couder & Brachet

(1991), Vincent Meneguzzi (1991)), which are responsible for much of the intermittency

of this flow. After decomposing the vorticity field into an orthogonal wavelet series,

we calculate the square of each wavelet amplitude, which corresponds to the enstrophy

retained in that mode. Subsequently, we sort them by decreasing order of magnitude and

compute their partial sum to obtain the compression curve of the wavelet basis. In Fig. 3
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FIGURE 3. Compression curve: % retained enstrophy versus % number of retained wavelets.
The star corresponds to the Donoho-Johnstone threshold.

we plot the percentage of retained enstrophy versus the fraction of retained wavelet
modes. This curve shows that very few wavelet modes contain most of the enstrophy

and that, above 10% of the modes, it saturates rapidly. This saturation corresponds to a

quasi-equipartition of the enstrophy, which is characteristic of random fields. In Fig. 3 we
indicate by a star the Donoho-Johnstone threshold. This cutoff retains 3% of the wavelet
coefficients and 79% of the enstrophy. The coherent vorticity _c is then reconstructed

from the retained wavelet coefficients, and the incoherent vorticity _I is the remainder.

In Table 1 we find that only 3% wavelet modes correspond to the coherent flow, which

retains 98.9% of the energy and 79.1% of the enstrophy, while the remaining 97.1%

incoherent modes have only 0.5% of the energy and 21% of the enstrophy. The ratio

of statistical moments show that the velocity and vorticity skewness is negligible and

that this property is preserved by the CVS decomposition. The coherent velocity has the

same flatness (F = 2.9) as the total velocity, but the incoherent velocity presents a much

smaller flatness (F = 3.4). The coherent vorticity has a strong flatness (F = 9.6) while

the incoherent vorticity, likewise, has a reduced flatness (F = 4.8).

In Fig. 4 we display the modulus of the coherent (left) and incoherent (right) vorticity
fields. Note that the values of the vorticity isosurfaces are the same for the total and

the coherent fields while they have been reduced by a factor 2 for the incoherent field

since its amplitude is much smaller. In the coherent vorticity (Fig. 4, left) we recognize

the same vortex tubes as those present in the total field. In contrast, the incoherent

vorticity (Fig. 4, right) is structureless and does not exhibit any organized structures.

Hence, the CVS decomposition disentangles the intermittent from the non intermittent
contributions, with all the vortex tubes retained in the coherent modes whatever the

scale where they are active.
The energy spectra for the total, coherent and incoherent velocity fields, computed

using the Biot-Savart law from the corresponding vorticity fields, are plotted in Fig. 5

(left). The spectrum of the coherent contribution is nearly identical to the spectrum of
the total flow in the inertial range, i.e. it has k -_/3 behavior. Only in the dissipative

range does the coherent spectrum decay more rapidly than the incoherent one, since we

conjecture that some of the coherent energy is transferred into incoherent energy which

is then dissipated. The incoherent contribution exhibits a k 2 scaling which corresponds

to energy equipartition. The incoherent velocity field is decorrelated, which makes sense

since the incoherent vorticity is structureless (see Fig. 4, right).

To check the dynamical behavior of the coherent and incoherent contributions, we

computed their energy transfer in wavenumber space. For practical reasons this has been
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quantity total
coherent incoherent large scales small scales

% of coefficients 100 % 2.9 % 97.1% 2.9 % 97.1%

_C _I t_L _S

Enstrophy Z 4895 3872 1024 3455 1440

Enstrophy (percentage) 100 % 79.1% 20.9 % 70.6 % 29.4 %

Skewness S -.048 -.056 0.000 -.041 -.002

Flatness F 8.7 9.6 4.8 6.1 9.6

Energy E 43.01 42.56 0.23 42.69 0.33

Energy (percentage) 100.0 % 98.9 % 0.5 % 99.2 % 0.8 %

Skewness S 0.051 0.052 0.000 0.053 0.003

Flatness F 2.9 2.9 3.4 2.8 6.8

TABLE 1. Statistical properties of the vorticity and velocity fields for CVS (left) and POD
(right) decompositions.

done at reduced resolution N = 1282. Figure 5 (right) shows that the coherent flow is

responsible for most of the energy transfer, giving an energy cascade from large to small

scales, and almost vanishes in the viscous range. In contrast, the incoherent flow does not

contribute to the energy transfer in the inertial range, but dominates in the dissipative

range. From these observations, we put forward the following scenario for the turbulent

cascade: the energy injected into the large scales is nonlinearly transferred towards the

small scales by nonlinear interactions between the vortex tubes. At the smallest scales,

this becomes transfer of coherent energy into incoherent energy which is then dissipated

at small scale. We conjecture that, on the contrary, the incoherent background flow does

not transfer energy into the coherent flow as it is structureless and well decorrelated. To

confirm this we are planning to analyze the nonlinear and the linear terms of 3D Navier-
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FIGURE 4. CVS decomposition: coherent (left) and incoherent (right) contributions
(isosurfaces I_1 = 3a, 4a, 5a and 3/2a, 2a, 5/2a, respectively).
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Stokes equations in wavelet space, as we have done for 2D Navier-Stokes equations in

the turbulent regime (Schneider g: large (1998)).

Figure 6 (left) shows the PDF of the velocity in semilogarithmic coordinates. The
coherent velocity has the same Gaussian distribution as the total velocity. The PDF of

the incoherent velocity is also Gaussian, but its variance is reduced by a factor la. In

contrast to the velocity, the PDF of vorticity (Fig. 7, left) is a stretched exponential with

significant tails. The coherent vorticity has the same PDF as the total vorticity including

the tails, while the incoherent vorticity has an exponential PDF with much weaker tails.
Since the CVS filtering is based on wavelet denoising and decorrelating without any

dynamical assumption or pattern recognition procedure, we now check a posteriori tilat

we have actually separated the vortex tubes from the background flow. The coherent vor-
tex tubes can be described as local steady solutions of Euler equations which correspond

to regions where there is a depletion of nonlinearity, which happens when the vorticity
and velocity vectors are aligned. This situation maximizes the flow helicity H = 17.

and corresponds to flow Beltramization (Moffatt H. K. (1985)). To study this tendency

towards alignment of the vorticity _ and the velocity V, we plot in Fig. 8 the PDF of
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cos a = _. We observe that the coherent contribution has the same tendency towards

Beltramization as the total flow, which is characterized by the two maxima encountered

in both PDFs for c_ = 0 ° (alignment) and 180 ° (anti-alignment). In contrast, the in-
coherent contribution is more evenly distributed with a maximum at a = 90 °, which

indicates a tendency towards a local two-dimensionalization since the probability that
the vortex stretching term _. VI? vanishes is large. This observation, together with the

evidence for strong dissipation in the incoherent contribution (see transfers in Fig. 5),
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agrees with a remark of Moffatt: Euler flows contain blobs o/ maximal helieity (positive or

negative) which may be interpreted as 'coherent structures', separated by regular sur/aces
on which vortex sheets, the site o] strong viscous dissipation, may be located (Moffatt

H. K. (1985)). Following this picture the coherent vorticity corresponds to the coherent
structures, which tend to maximize helicity where vorticity and velocity vectors tend to

align with each other, while tile incoherent vorticity corresponds to foliated regions which

tend to maximize dissipation.
The results discussed here confirm those we obtained for the CVS decomposition of 3D

forced homogeneous isotropic turbulent flow computed by DNS at microscale Reynolds
number Rx = 150 (Vincent Meneguzzi (1991)) with resolution N = 2403 (Farge, Schnei-

der & Pellegrino (2000), Farge & Schneider (2000), Farge, Pellegrino & Schneider (2000)).

4. Divergence problem

Due to the fact that the CVS filtering is nonlinear and the vector valued wavelet

basis we have used here (the Coifman 12 wavelet, see Fig. 1) is not divergence-free, i.e.

V • _ _ 0, ttle CVS filtering does not yield coherent and incoherent vortices that are

divergence-free. We found that, for the case studied hcre, the divergent contribution of
the vorticity field remains below 3% of the total enstrophy. The same problem is also
encountered for vortex methods applied to 3D turbulent flows (Winckelmans (1995)).

However, the corresponding coherent and incoherent velocity fields are divergence-free

since they were reconstructed using the Biot-Savart kernel.
There are several ways to insure that the coherent vorticity remains divergence-free:

• use divergence-free orthogonal wavelets (Lemari_ (1992)),

• decompose w into w = Wdiv=O + V_p. Then ¢ can be calculated by taking the diver-

gence which leads to a Poisson equation V2¢ = V - w,
• apply the previous decomposition, not to the solution, but to the wavelet basis

itself, which can be done as a precalculation since the wavelet decomposition is a linear

transformation.
We are planning to explore these solutions in future work. It may also be that the

divergent contribution of the coherent vorticity field does not significantly affect the flow
evolution. To check this we will compare two CVS decompositions for the same flow, one

using divergence-free wavelets and the other one using tile Coifman 12 wavelet as here,
and compute the contribution of the divergent coherent vorticity to the nonlinear terms

to see if it remains small.

5. Comparison between CVS and POD decompositions

The procedure CVS decomposition uses to separate turbulent flows into organized and
random fluctuations differs from the POD (for details see Berkooz, Holmes & Lumley

(1993)). POD, also called Principal Component Analysis (PCA) or Karhunnen-Lo_ve

decomposition, computes the auto-correlation tensor of an ensemble of realizations, then

diagonalizes it and retains only those eigenmodes corresponding to the N> largest eigen-
values. This yields the best basis for the ensemble of realizations with respect to the

L2-norm.
In the POD procedure tim retained modes are defined a priori for all realizations. In

contrast, CVS performs the separation a priori and selects from a given set of basis func-

tions, the orthogonal wavelets, those having the strongest coefficients. Hence the selection
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%

FIGURE 9. POD decomposition: low wavenumber (left) and high wavenumber (right)
contributions (isosurfaces [_[ = 3a, 4a, 5a and 3/2a, 2a, 5/2a, respectively).

procedure is nonlinear, as the retained basis functions depend on the flow realization.

From a statistical point of view, the CVS method is based on a Bayesian approach while
POD is based on a non-Bayesian (also called frequentist) approach. For the time in-

tegration the CVS a priori retains the wavelets whose coefficients are larger than the
threshold e and some of their neighbors. This selection of the active wavelets is nonlinear

because it depends on the direction of the energy and enstrophy transfers in wavelet

space which evaluated at the previous time step. Note that the computational cost of

POD decomposition scales as N 3, while it scales as N for the CVS decomposition.

For a homogeneous isotropic turbulent flow such as the one studied here, the POD

yields the Fourier basis since the correlation tensor is translationally invariant. So we

now project the vorticity field on a Fourier basis and split the flow into low and high
wavenumber contributions. Note that for this linear separation it doesn't matter whether

we decompose the vorticity or the velocity fields, as the Fourier basis diagonalizes the

curl operator. To get the same compression ratio as CVS, i.e. 3% of the modes retained,
the cut-off wavenumber is k_ = 48 (see Fig. 5, left). This is a particular case of LES

filtering, and the 97% high wavenumber modes are the LES subgrid scale modes.

In Fig. 9 we plot the modulus of vorticity for the POD decomposition. In the low

wavenumber modes (left) we observe some vortex tubes. If we compare them with those

retained in the CVS coherent vorticity (Fig. 4, left) we find that only a subset of the

vortex tubes is extracted and that their structure is smoothed due to the low pass fil-
tering produced by POD in this case. Consequently, the small scale contributions of the

vortex tubes are contained in the high wavenumber modes (Fig. 9, right), which exhibit

organized structures similar to those found in the total vorticity field (Fig. 2).
Table 1 shows that POD retains 99.2% of the energy, while CVS retains only 98.9%. On

the other hand, CVS retains 79.1% of the enstrophy, while POD retains only 70.6%Z.

The skewness of velocity and vorticity is negligible, a property preserved by both the
CVS and POD decompositions.

In Fig. 7 the vorticity PDFs show that both the large and small scale contributions

have strong variance, with the peak of the small scale PDF being slightly larger than that

of the large scale PDF. It is important to note that the vorticity PDFs are interchanged
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compared to the CVS decomposition. The vorticity PDF of the large scales retained by

POD is exponential (with flatness 6.1), while it is stretched exponential (with flatness

9.6) for the discarded small scales. The vorticity PDF of the coherent modes retained

by CVS is stretched exponential (with flatness 9.6), while it is exponential (with flatness

4.8) for the discarded incoherent vorticity.
Moreover, the velocity PDFs for POD (Fig. 6, right) show that, although the large

scale contribution is Gaussian (with flatness 2.9), this is not the case for the small scale

contribution which maintains a stretched exponential behavior as for the vorticity PDF

(with flatness 6.8). In contrast, the velocity PDFs for CVS (6, left) are Gaussian for
both the coherent and the incoherent modes. This non-Gaussian behavior of both the

vorticity and velocity PDFs of the POD/LES small scales may make modeling of its
effect on the resolved large scales difficult. This difficulty is much less acute with the

CVS decomposition since the PDFs of the incoherent contribution is Gaussian for the

velocity (6, left) and exponential for the vorticity (7, left).
Concerning the alignment properties between vorticity and velocity, we found that

both the large and small scale contributions have the same PDF of cos a as the total

flow (8, right). This is further evidence that coherent vortex tubes are present in both
components since, in contrast to CVS, the POD decomposition does not separate different

topological behaviors.

6. Conclusion

We have demonstrated that CVS decomposes a 3D forced homogeneous isotropic tur-

bulent flow into organized vortex tubes and a random incoherent background flow. For

the same 3D flow, POD, which in this case uses the Fourier basis and is essentially a LES

decomposition, does not extract all of the vortex tubes since a tot of organized structures
remain in the small scales. Furthermore, the small scales have a stretched exponential

probability distribution for both the velocity and the vorticity. In contrast, the incoher-
ent modes of the CVS decomposition have an exponential PDF for the vorticity and a

Gaussian distribution for the velocity. Moreover, they are structureless and their energy

spectrum shows an energy equipartition, which is not the case for the POD small scales.
In conclusion, we conjecture that modeling of the effect of the discarded modes on

the resolved modes may be better justified for CVS than for POD. One should keep in

mind that LES of turbulent flows is performed by integrating only one flow realization

at a time. The statistics are obtained afterwards by space, time, or ensemble averaging

several realizations over time if the flow is statistically steady. Therefore, POD, which is

by construction the best basis to represent with a reduced number of modes an ensemble
of flow realizations, is not necessarily the best decomposition for computing the flow

evolution realization by realization.
We think that the classical strategy of projecting the flow onto a basis and truncating

the series to a fixed number of resolved modes can be improved. CVS adopts a nonlinear

strategy, which adapts the number of resolved modes to each flow realization, by project-

ing the flow at each time step onto a wavelet basis, retaining only the strongest wavelet
coefficients. In this case all degrees of freedom which contribute to the flow nonlinearity,

i.e. the coherent modes, are computed whatever their scale, while the remaining degrees

of freedom, i.e. the incoherent modes, are discarded and modeled, perhaps by a linear

dissipation.
The CVS procedure that we have applied to 2D turbulent flows (Farge, Schneider &:
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Kevlahan (1999)) can be generalized to 3D turbulent flows since we have shown that the

incoherent modes are structureless, decorrelated, have an energy equipartition spectrum,
and have a Gaussian PDF of tile velocity.

A crucial step in the demonstration of the potential of the CVS method is to design an

adaptive wavelet solver for the 3D Navier-Stokes equations written in vorticity-velocity

formulation, which combines an Eulerian projection of the solution with a Lagrangian
procedure for the basis adaption. We have done this for 2D turbulent flows, and we are
presently developing it for 3D turbulent flows.
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By Kai Schneider_, Marie Farge_, Giulio Pellegrino¶ AND Michael Rogers[I

Coherent Vortex Simulation (CVS) filtering has been applied to DNS data of forced

and unforced time-developing turbulent mixing layers. CVS filtering splits the turbulent

flow into two orthogonal parts, one corresponding to coherent vortices and the other

to incoherent background flow. We have shown that the coherent vortices can be rep-

resented by few wavelet modes and that these modes are sufficient to reproduce the

vorticity probability distribution function (PDF) and tile energy spectrum over the en-

tire inertial range. The remaining incoherent background flow is homogeneous, has small

amplitude, and is uncorrelated. These results are compared with those obtained for the
same compression rate using large eddy simulation (LES) filtering. In contrast to the

incoherent background flow of CVS filtering, the LES subgrid scales have a much larger

amplitude and are correlated, which makes their statistical modeling more difficult.

1. Introduction

In the turbulent regime the solutions of Navier-Stokes equations exhibit coherent vor-

tices whose nonlinear interactions are responsible for the flow evolution. Since these co-

herent vortices are well localized and excited on a wide range of scales, we have proposed

to use the wavelet representation of the vorticity field to extract them (Farge, Schneider

& Kevlahan (1999)). Orthogonal wavelet bases are well suited for this because they are
made of self-similar functions well localized in both physical and spectral spaces (Farge

(1992), Daubechies (1992)). In (Farge, Schneider & Kevlahan (1999)) we have introduced
a new method, called Coherent Vortex Simulation (CVS), to compute turbulent flows.

It is based on the wavelet filtered Navier-Stokes equations and their solution in an adap-

tive wavelet basis which is dynamically adapted during the flow evolution (Schneider &

Farge (2000)). Here we first present the vector valued wavelet algorithm used to extract
coherent vortices out of turbulent flows. Then we employ this algorithm to analyze DNS

computations of two time-developing three-dimensional turbulent mixing layers (Rogers

& Moser (1994)). The results are compared with those obtained for the same compres-

sion using an ideal low-pass filter, as used for LES computation. Finally, we draw some
conclusions for developing CVS computations for three-dimensional turbulent flows.

2. Wavelet method for coherent vortex extraction

In (Farge, Schneider & Kevlahan (1999), Farge, Pellegrino & Schneider (2000)) we have

proposed a wavelet-based method to extract coherent vortices out of 2D and 3D turbulent

i" CMI, Universitfi de Provence, Marseille, France
:_ LMD-CNRS, Ecole Normale Sup_rieure, Paris, France
¶ ICT, Universitiit Kaxlsruhe (TH), Germany
II NASA Ames Research Center, Moffett Field, CA
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flows. The algorithm for the 3D case is described below. We consider the vorticity field
5(i) = V × V, computed at resolution N = 23J, N being the number of grid points

and J the number of octaves. Each component is developed into an orthogonal wavelet

series from the largest scale lmax = 20 to the smallest scale l,m_ = 2 J-1 using a 3D
multi-resolution analysis (MRA) (Daubechies (1992), Farge (1992)):

J-I 2J-I 2J-I 2J-I 2__i

j=0 i_=0 iu=0 i,=0 ,u=l

with Cj,i,,i,i,i,(_) = Cj,i.(x) Cj,i_(y) Cj,i,(z), and

Cj,i,(x)¢j,i,(y)¢j,i,(z) ; p= 1 ,

g'_i,,iv,i, (x) = ¢j,i, (x) ¢j,i_ (Y) ¢j,i, (z) ; # = 4 , (2.2)

Cj,i,(z)¢y,i_(y)¢j,i,(z) ; #=6 ,

where Cj,i and Cj,i are the one-dimensional scaling function and the corresponding

wavelet, respectively. Due to orthogonality, the scaling coefficients are given by ©0,o,o =
(w, ¢o,0,o) and the wavelet coefficients are given by ©e. = (_z '" ), where

3,_,iu,i_ _ _j,i_,iu,i _
(-, ") denotes the L2-inner product.

We then split the vorticity field into aTc(_) and 5t(_) by applying a nonlinear thresh-

olding to the wavelet coefficients. The threshold is defined as e = (4/3ZlogN)l/2, and
it only depends on the total enstrophy Z and on the number of grid points N without

any adjustable parameters. The choice of this threshold is based on theorems (Donoho
(1993), Donoho & Johnstone (1994)) proving optimality of the wavelet representation
to denoise signals in the presence of Gaussian white noise since this wavelet-based esti-

mator minimizes the maximal L2-errorfor functions with inhomogeneous regularity. The
coherent vorticity field _c is reconstructed from the wavelet coefficients whose modulus

is larger than e and the incoherent vorticity field _t from the wavelet coefficients whose

modulus is smaller or equal to e. The two fields thus obtained, 5c and _1, are orthog-
onal, which ensures a separation of the total enstrophy into Z = Zc_ + ZI because the

interaction term (a3c, _I) vanishes. We then use Biot-Savart's relation Q = V × (V-2_)

to reconstruct the coherent velocity 17¢, and the incoherent velocity 17l for the coherent
and incoherent vortices, respectively.

In the present paper we apply the above algorithm to two high resolution direct numer-

ical simulations (DNS) of 3D turbulent flows with a Taylor microscale Reynolds number
of about R_ = 150. The first computation is a forced mixing layer computed at resolu-

tion 384 x 120 x 128 and evolved for 40 eddy turnover times (Rogers & Moser (1994)).
The vorticity field is interpolated onto a physical space grid that is either coarsened to

N = 643 for flow visualization (Fig. 1, Fig. 2), or refined to N = 512 x 256 x 128 in order

to compute the energy spectra and vorticity PDFs using the full resolution compatible
with the dyadic wavelet representation (Fig. 3). The second computation is an unforced

mixing layer computed at resolution 512 x 180 × 192 and evolved for 60 eddy turnover
times (Rogers & Moser (1994)). Again the vorticity has been interpolated onto different

physical space grids for flow visualization (N = 643 for Fig. 5, Fig. 6, and Fig. 8), and
statistical analysis (N = 512 x 256 x 128 for Fig. 7).
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FIGURE 1. Total vorticity of the forced 3D mixing layer at resolution N = 643.

3. Application to the forced mixing layer

Figure 1 shows the modulus of vorticity for the total flow in the forced case (at low
resolution N = 643). We observe well pronounced longitudinal vortex tubes, called ribs,

which result from a 3D instability and are wrapped onto four transverse rollers that

are produced by the 2D Kelvin-Helmholtz instability. The coherent vorticity (see Fig. 2

top), which is contained in 5.7% (at low resolution N = 643) or 3% (at high resolution
N = 512 x 256 x 128) of tile total number N of wavelet coefficients, captures most of tile

turbulent kinetic energy and enstrophy, even at high wavenumbers.

Moreover, the PDF of the coherent vorticity is similar to that of the total flow (see

Fig. 3 bottom left). The incoherent vorticity (see Fig. 2 bottom), which is represented by

94.3% (at low resolution N = 643) or 97% (at high resolution N = 512 x 256 x 128) of the
total number N of wavelet coefficients, contains little of the turbulent kinetic energy and

enstrophy. It is nearly homogeneous with a very low amplitude and contains no structure.
The PDF of the incoherent vorticity (Fig. 3 bottom left) follows an exponential law with

a much reduced variance compared to the PDF of the total flow.

The similarity between the 1D energy spectra (Fig. 3 top left) in the streamwise direc-

tion for the coherent part of the flow and for the total flow indicates that the energetic

turbulent motions are well captured by the filtering. In contrast, the incoherent part

contains very little energy and is well uncorrelated with flat energy spectrum.

In Fig. 4 we display vertical profiles of the three vorticity components wx, wu, a_ aver-

aged in the streamwise and spanwise directions. Examination of the the spanwise com-

ponent cz_ (Fig. 4, bottom) shows that the coherent vorticity exactly follows the total
vorticity, while the incoherent vorticity oscillates weakly around zero with amplitudes
less than 4% of the minimal value &,,mi_. The vertical component a_y (Fig. 4, middle)

of the total flow vanishes since the flow is homogeneous in the streamwise and spanwise

directions. The coherent and incoherent components oscillate around zero with ampli-

tudes of about 1% of _dz,rain. The streamwise component _ox profiles (Fig. 4, top) are

similar to the spanwise ones in that the coherent component follows the total one, while



322 K. Schneider, M. Farge, G. Pellegrino _4 M. Rogers

0.00

)

f

0.00

\ F .... " Jf_

J_-'J 94.3% N

Z \ /.i _-/" X 37.5% Z

30 3

FIGURE 2. Forced mixing layer. Top: Coherent vorticity. Bottom: Incoherent vorticity.

the incoherent vorticity oscillates weakly around zero with amplitudes less than 4% of
the minimal value _z,min-

4. Application to the unforced mixing layer

Figure 5 shows the modulus of vorticity for the total flow for the unforced mixing

layer at resolution N = 643. In contrast to the forced mixing layer (Fig. 1), we observe

much less pronounced longitudinal vortex tubes and transverse rollers, with little, if any,
large-scale structures.

The coherent vorticity (Fig. 6 top), which is contained in 8% (at low resolution N --

64 a) or 3% (at high resolution N = 512 x 256 x 128) of the total number N of wavelet
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FIGURE 3. Comparison of CVS (left) with LES (right) filtering for the forced mixing layer at
resolution N = 512 x 256 x 128. Energy spectra (top) and PDF of vorticity (bottom) of total,
coherent (3% N) and incoherent (97% N) flow using CVS filtering and of low wavenumber and

high wavenumber components using LES filtering.

coefficients, shows small-scale organized structures, while the incoherent vorticity (Fig. 6

bottom), which represents 92% (at low resolution N = 64 a) or 97% (at high resolution
N = 512 x 256 x 128) of the total number N of wavelet coefficients, is homogeneous,

structureless, and has a much weaker amplitude.

This is also confirmed by the vorticity PDF (Fig. 7 bottom left), where the coherent

vorticity presents the same non-Gaussian distribution as the total vorticity. In contrast,
the incoherent vorticity follows an exponential law with a much reduced variance com-

pared to the total vorticity. Moreover, we have verified, as for the forced case, that the
coherent flow has the same spectral distribution as the total flow for all but the highest

dissipative wavenumbers (Fig. 7 top left), while the incoherent flow is uncorrelated and

exhibits a flat energy spectrum.
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FIGURE 5. Total vorticity of the unforced 3D mixing layer at resolution N = 643.

5. Comparison between CVS and LES filtering

We now consider the results obtained with tile LES filtering applied to the two time

developing mixing layers we have studied. We choose the simplest LES filter and use a

low-pass Fourier filter with a cut-off at the wavenumber k = 25, which therefore retains
9% of the N = 512 x 256 × 128 Fourier modes. The discarded Fourier modes correspond

to the subgrid scales. This comparison is actually quite unfair for the CVS filtering since

it retains even less, namely 3% of the N wavelet modes.

The LES filtering keeps only the scales larger than the cutoff wavenumber (Fig. 3 and

7 top, right), and hence the coherent vortices are smoothed. As a result, the extrema of
vorticity are strongly reduced (see PDF on Fig. 3 and 7 bottom, right). In contrast, the

CVS filtering retains the organized features, whatever their scales, and in this case the

shape of the vorticity PDF is fully preserved even for large values of vorticity (Fig. 3 and

7 bottom, left).
If we now consider the results obtained with the LES filtering applied to the unforced

mixing layer for the same compression rate, we observe that both low and high wavenum-

ber components (Fig. 8) present localized structures and that the vortieity PDF for both

components (Fig. 7 right) has about the same variation. In fact the high wavenumber

modes, which ought to be modeled in LES to avoid numerical divergence, have a more
non-Gaussian distribution than the low waveimmber modes which are resolved by LES;

therefore, the turbulence modeling cannot be based on the assumption of a Gaussian

behavior for the discarded high waveimmber modes.

Concerning turbulence parameterization, i.e. the statistical modeling of the effect of
the discarded modes on the retained modes, we can draw the following conclusions:

• The CVS filtering disentangle the organized from randoin components of turbulent

flOWS.

• The LES filtering does not produce subgrid-scale modes that are uncorrelated, and

there are, therefore, many organized structures present in the subgrid-scale flow that can

interact nonlinearly and transfer energy back to larger scales (backscatter).
• The incoherent modes discarded by CVS have very weak amplitude, are ahnost ho-
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FIGURE 6. Unforced mixing layer. Top: Coherent vorticity. Bottom: Incoherent vorticity.

mogeneous in space, and are well decorrelated, which should avoid the transfer of energy

from the incoherent modes to the coherent modes and, therefore, controls backscattering.
• The variability of the total field is not retained by the LES filtering and, as a con-

sequence, the discarded high-wavenumber modes contain much more vorticity than the
incoherent modes discarded by the CVS filtering.

• For LES, if we do not model the effect of the subgrid scale modes on the resolved

modes, the energy accumulates at the cutoff and the computation diverges.
• For CVS, if we do not model the effect of the discarded incoherent modes on the

resolved coherent modes, there is no risk of divergence since energy can be transferred

in both directions all along the fully resolved inertial range - the only consequence of no
turbulence model may be some extra dissipation.

We conjecture that the derivation of a turbulence model is easier with CVS filter-
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FIGURE 7. Comparison of CVS (left) with LES (right) filtering for the unforced 3D mixing layer,
at resolution N = 512 x 256 × 128. Energy spectra (top) and PDF of vorticity (bottom) of total,
coherent (3% N) and incoheren.t (97% N) flow using CVS filtering and of low wavenumber and
high wavenumber components using LES filtering.

ing than with LES filtering because the discarded modes in this case are statistically
well behaved, homogeneous, uncorrelated, and have an exponential PDF with a small

variability.

6. Divergence problem

Due to the fact that the CVS filtering is nonlinear and the vector valued wavelet

basis is not divergence-free, i.e. V-_ # 0, the CVS filtering does not yield coherent
and incoherent vorticity that is completely divergence-free. For the flow examined here,

however, the divergent contribution of the vorticity field was less than 3% of the total

enstrophy. The same problem is also encountered for vortex methods applied to 3D
turbulent flows (Winckehnans (1995)). However, the corresponding velocity fields are
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FIGURE 8. Unforced case. Top: Low wavenumber vorticity of the turbulent mixing layer recon-

structed from 8% of the wavelet coefficients and containing 48_ of the total enstrophy. Bottom:

High wavenumber vorticity reconstructed from 92% of the Fourier coefficients and containing
52_ of the total enstrophy.

divergence-free since they have been reconstructed using the Biot-Savart kernel. There

are several possible ways to insure that the coherent vorticity remains divergence-free:

• use divergence-free orthogonal wavelets (Lemari_ (1992)),

• decompose w into _ = _di,=o + V¢. Then ¢ can be calculated by taking the diver-
gence which leads to a Poisson equation V2¢ = V. w.

• apply the previous decomposition, not to the solution, but to the wavelet basis

itself, which can be done as a precalculation since the wavelet decomposition is a linear
transformation.
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7. Conclusion and perspectives

The CVS method is based on the projection of the vorticity field on an orthogonal

wavelet basis and the decomposition of the vorticity field into two orthogonal components,

using a nonlinear thresholding of the wavelet coefficients. The coherent vorticity field
is reconstructed from the few wavelet coefficients larger than a given threshold, which

depends only' on the resolution and on the total enstrophy, while the incoherent vorticity
is reconstructed from tile many remaining weak wavelet coefficients. The coherent and

incoherent velocity fields are then derived from the coherent and incoherent vorticity

fields using Biot-Savart's equation.
In this paper we have applied this method to two 3D time developing mixing layers,

forced and unforced, at resolution N = 512 x 256 x 128. We have shown that the coherent

flow corresponds to only 3%N wavelet modes, presents the same non-Gaussian PDF of

vorticity, and retains most of the energy and enstrophy, with the same spectral distribu-

tion, as the total flow. Moreover, the remaining incoherent flow is structureless, exhibits a
much narrower PDF of vorticity with an exponential distribution, and presents an energy

equipartition spectrum. This suggests the possibility of parameterizing the effect of the
incoherent flow on the coherent flow using a low-order statistical model. The advantage

of the CVS filtering in comparison to the LES filtering was also demonstrated. The small

scale flow, which is discarded in LES and replaced by' a subgrid scale model, exhibits

many coherent structures, has a much wider PDF of vorticity, and does not present an

energy equipartition spectrum.
The success of the CVS filtering procedure suggests the possibility of extending the

CVS method to solve the 3D Navier-Stokes equations directly' in an adaptive wavelet

basis. In (Schneider & Farge (2000)) we have shown that the CVS computation of a

2D mixing layer gives tim same results as those from a standard DNS. The dynamical

adaption of the grid in physical space allows the important coherent part of the flow to be
evolved with a reduced number of active degrees of freedom. Thus the CVS computation

combines a Eulcrian representation of the flow with a Lagrangian adaption strategy for

the active degrees of freedom, which are remapped at each lime step using the CVS

filtering.
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Sub-optimal control based wall models for LES
including transpiration velocity

By J. S. Baggettt, F. Nicoud:_, B. Mohammadi¶, T. Bewleyll, J. Gullbrand
AND O. BoteUa

Most current, wall models for tile large eddy simulation (LES) of high Reynolds number

turbulent boundary layers are ad hoc parameterizations of the wall stresses needed to

close the finite-difference approximation to the viscous operator in terms of tile tangential

flow velocities at the first off-wall grid point. These models cannot compensate for the

numerical and subgrid-scale modeling errors that are intrinsic to the severely under-

resolved LES in the near-wall region. By' using the wall stress boundary conditions as
control to force the solution towards the desired mean velocity' profile, it is possible to

find better wall stress models (Nicoud et al. (2000)). We consider the use of transpiration

velocity in addition to the wall stresses as part of the approximate boundary conditions.
In this work, optimal control theory is used t.o find a combination of wall stresses and

transpiration velocity that improves the prediction of the mean velocity profile and the
turbulence intensities in a coarse grid LES of high Reynolds number turbulent channel

fow.

1. Introduction

1.1. Background

One of the primary reasons that large eddy simulation (LES) is not yet practical for
manv flows of engineering interest is the high resolution required in turbulent boundary

layers. The only way to simulate many flows is to completely bypass the sinmlation of
the near-wall turbulence and to model its effects on the flow away from the wall. If the

near-wall flow is not computed, then the no-slip boundary condition does not apply and

the wall stresses are required to close the usual finite difference approximations to the

viscous terms.
The simplest wall stress models correlate the wall stresses to the tangential velocities

at the first off-wall grid points. Mor_ complex models for the wall stresses rely on the

integration of boundary' layer equations on an auxiliary mesh embedded near the wall.

See Cabot & Moin (2000) for a recent review of wall stress models. These models perform

adequately at low to moderate Reynolds numbers in simple flows, but they fail to produce

good results at higher Reynolds numbers even in simple channel flow (Nicoud et al.

(2000)). The current generation of wall stress models attempts to reproduce the physics
of the wall stresses averaged over the filter width of the outer LES computation. However,

none of these models can compensate for the numerical and subgrid-scale (SGS) modeling

errors that are intrinsic to an LES computation which necessarily relies on a low-order

numerical scheme and an exceedingly coarse near-wall mesh.

-_ University of Wisconsin La Crosse, WI, USA
:_ CERPACS, France
¶ University of blontpellier and INRIA, France
II Univ. Calif. San Diego, CA, USA
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To find wall models in the form of approximate boundary conditions that can compen-

sate for the errors intrinsic to under-resolved LES, we use techniques from optimal control

theory. In our approach, a sub-optimal control strategy is used in which the objective is

to force the outer LES towards a desired solution by using the approximate boundary,
conditions as control. In previous work (Nicoud et al. (2000)), this approach was tested

by using wall stress boundary conditions as a control to force the mean velocity of a

coarse-grid LES of channel flow at high Reynolds number towards a logarithmic velocity
profile. It was found that the resulting wall stress boundary conditions yielded much
better results in terms of the mean velocity profile than existing wall stress models at

high Reynolds numbers. Furthermore, it was found that the resulting wall stresses were

well correlated with the local velocity field and that the dynamically relevant portion of
the wall stresses could be predicted by a relatively simple linear model.

Furthermore, it was found that the wall stresses generated by the sub-optimal control

strategy, while improving the prediction of the mean velocity profile considerably, did
not improve the prediction of the velocity fluctuations. This may have been due to the

inadequacy of tile dynamic Smagorinsky subgrid-scale model in the anisotropic logarith-

mic region of the channel flow, but it could also have been that wall stress boundary

conditions alone cannot fully compensate for the errors in the vicinity of the computa-
tional boundary. Generally, any improvements in the prediction of the outer flow were
limited primarily to a region extending only a few grid cells from the wall.

When wall stress boundary conditions are used to model the influence of the near-wall

region on the outer flow, it is usually assumed that the wall-normal velocity is identically

zero at the boundary. However, since the no-slip boundary condition cannot be applied
without adequate near-wall resolution, perhaps it does not make sense to insist that

the velocity normal to the boundary is zero. After all, a wall model should capture the
effects of the near-wall turbulence on the outer flow, including such hallmarks of near-wall

turbulence as ejections and sweeps. In any case, the combination of non-zero boundary-
normal velocity with wall stresses should allow the approximate boundary condition

wall model to influence more of the computational domain than wall stress boundary
conditions alone since the boundary-normal velocity, effects the entire flow directly via
the continuity equation.

It is the objective of the current work to test the effect of including a transpiration

velocity approximate boundary condition (net transpiration will be zero) in addition to

the wall stress boundary conditions in the sub-optimal control framework first explored in

Nicoud et al. (2000). The sub-optimal control framework, including transpiration velocity,

was first presented in Nicoud & Baggett (1999), but it is presented again here in a slightly
more general form. We also discuss whether or not simple, algebraic models derived from
the sub-optimally controlled simulations are likely to be successful.

2. Sub-optimal control framework

2.1. Channel flow

We consider the LES of incompressible, turbulent channel flow on a uniform mesh with

32 volumes in the streamwise and spanwise directions and 33 volumes in the wall-normal

direction. A staggered grid system is used with second order finite differences for the spa-
tial derivatives and a third-order Runge-Kutta discretization for the time advancement.

Periodic boundary conditions are imposed in the two directions xl and Xa (or x and
z) parallel to the walls. The SGS model is the Smagorinsky model with the coefficient

determined by the plane-averaged dynamic procedure of Germano et al. (1991). Unless
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otherwise stated, all quantities are nondimensionalized by the friction velocity, u_, and

channel half-height, h. The channel walls are at y = +1. The skin friction Reynolds num-

ber is defined as ReT = uTh/u. When the mean flow is statistically converged, the mean

streamwise pressure gradient is equal to the wall stress, that is, -OP/Ox = (Tto) = 1.

All of the simulations in this work were performed at Re_ = 4000 in a computational

domain with dimensions 2:rh x 2h x 2_h/3 in the streamwise (xl or x), wall-normal (x2

or y), and spanwise (x3 or z) directions, respectively.

The governing equations are:

o,,, oP o( (o,.o--( + +
(2.1)

Ou Ov,, 1
-- + -- = --¢,,
Oy,, Ox uto

V_,_ _ _)V

Ow Ov,_ 1
+ = --¢4,

Oy,, Oz 1_,,,

where the subscript n stands for tile outward normal to the wall and Uw is tile wall value of

the total dynamic viscosity u+ut (in this work uto = u). The control parameter ¢ is defined
to w

to to
as ¢ = (¢_,¢_,¢to) = (_'12,Vto,r_2) at y = +1 and ¢ (¢_,¢_,¢to) = -(rl_,v_,rg2 ) at

y=-l.

2.2. Objective function

In the sub-optimal control approach, the boundary conditions (specified by the control

parameter q_) are used as control to minimize an objective function at each time step. The

goal is to provide numerical boundary conditions to the flow solver so that the overall
solution is consistent with what is expected in a channel flow. The objective function is

specified as follows:
3 3

J(u; ¢) = _ Jmean,i(u; ¢) + _ ,/rms,i(u; ¢) + _ Jpenalty,i(¢)' (2.3)
i=1,3 i=1 /:1

The objective function consists of the three components. Jmean measures the distance

from the plane-averaged LES solution to a desired reference velocity profile. The second

component, firms measures the distance from the plane-averaged velocity fluctuation
intensities to desired target profiles. Finally, the third component, flpenalty penalizes

the use of large controls _. The component objective functions are defined below.

(2.2)

Ou---A= 0

Oxj

The pressure, P, contains a mean forcing component such that (-OP/Ox) = 1. Note

that no specific notation is used to describe spatial filtering associated with tile LES

formulation; rather, each variable herein should be understood as the filtered counterpart

of the actual variable (e.g. ui = ffi).
Since the no-slip boundary condition does not apply on the coarse mesh used here,

the boundary conditions that are supplied are the wall stresses T_2 and _-_ as well as

the normal velocity at the wall, vto. The boundary conditions, specified in terms of the

control parameter, ¢, which is defined below, on (2.1) are:
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For the mean streamwise velocity the target or reference profile is taken as a logarithmic

velocity profile throughout the channel: U_ref = _-1 lily+ + C. The spanwise velocity

reference profile is simply U3,re f - 0. The difference between the reference velocity profile

and the plane-averaged LES solution is a function of the wall-normal coordinate, y, and
can be expressed as

1//_u, (y) = _ (ui - Ui.ref) dx dz (i = 1,3) (2.4)

where ,4 is the channel area in the homogeneous plane. Note that any reference profile

suitable for a parallel flow could have been used. Notably, a more realistic shape could

have been used near the channel center. However, the logarithmic profile is well suited

for the near-wall region since we are using a coarse mesh and the Reynolds number,

ReT = 4000, is sufficiently high so that the first grid point lies in the logarithmic region
(y+ _ 121). The mean component of the objective function is then:

/f'Jmean,i(u; ¢) = ai _,(y)2dy, (i = 1,3) (2.5)
1

Note that there is no need to specify a target profile for the plane-averaged wall-normal
velocity since that will be identically zero at each time step provided there is no net
transpiration velocity through the boundaries.

The velocity fluctuation intensities are targeted through the Jrms component of the

objective function. The plane-averaged, mean square velocity fluctuations are compared

at each time step to the mean square velocity fluctuations, (u'i,ref) 2, from the LES of

Kravchenko, Moin & Moser (1996) which was performed at the same Reynolds number,
ReT = 4000, using a zonally defined mesh to resolve the near-wall region. The distance

between the plane-averaged mean square velocity fluctuations and their reference profiles
can be measured as

_u' (v) = _ (_ - (u,)) 2 - u'_' i.ref] dx dz, (i = 1, 2, 3), (2.6)

where (ui) denotes the average over the homogeneous directions of the velocity component
ui. The velocity fluctuation intensity component of the objective function is then

/_+'Jrms,i(u; ¢) = fli 8u,(y)2dy (i = 1,2,3) (2.7)
1

Finally, to prevent numerical instabilities it is necessary to regularize the control, that
is, the approximate boundary conditions, by including a penalty component in the overall
objective function:

"Yi_ ¢2 dxdz + A _ _i2¢4u2 dxd z (i=1,2,3). (2.8)Jpenalty,i(¢) = _" =+1 A =+1

The first term in the penalty component attempts to prevent the mean square norm of the

control parameter from becoming too large. In the case of transpiration velocity control,
however, it was found that it is necessary to prevent the transpiration velocity from

becoming too large at any single point, hence the second term in the penalty component
(2.8) was added.

Note that each component of the objective function includes a scalar parameter: ai,
Bi, 3q, or A. These scalars allow the relative importance of the various objectives to be
changed in the overall objective.
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2.3. Adjomt problem

The gradient of the objective function J with respect to the control parameter ¢ is
estimated by using the Fr6chet differential (Vainberg (1964)) defined for any functional

F as:

F(_b + e¢) - F($) (2.9)DF-

b7¢ = lirae--*0 (

where ¢ is an arbitrary direction. From (2.3) the gradient, J is:

De i=1,3

/ f £2G',(ui-(ud)U, dx@dz (2.10)A
i=l

3

+4//, , /L,
where Ni denotes the Fr6chet derivative of ui). The gradient of J cannot be calculated

directly from (2.10) since the derivatives Ni are unknown.
To calculate an approximation to the gradient of J, we start by assunfing that the

equation of state, (2.1), is discretized in time by a semi-implicit discretization:

u_ +: +At _+ Ox¢ Oxj (v+u,) \Oxj + Oz_} =RHS"
(2.11)

_?t n + l

At- j -0
Ox i

with the boundary conditions (2.2). The terms which depend oifiy on the variables at
the previous time step n are gathered in the generic notation t]HS '_ and disappear in the

analytical development.
We now formulate an adjoint problem to find the gradient (2.10). The first step is to

take the derivative of (2.11) with respect to the control ¢:

+ a t -5- z+ uj-g- zj+ uj- zj Oxj k0 j+ //J
(2.12)

with boundary conditions:

t Technically, the second
5,(_,-(ul))

2 i (L/i dxdydz, butf f fn A -(u,))
since I<L/i}I<< lU, I in general.

(2.13)

OU Or, 1 -
-- + - G,
Oyn Ox v,v

vn=£
OW OV,_ 1 -

+ - Cw.
Oy,_ Oz uw

term in (2.10) should include the integral

we make the approximation that (L/i} -= 0
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The right-hand side term in (2.12) is now zero since the flow field at time step n does

not depend on the control ¢ for the current time step. Therefore, tile superscript 'n + 1'

has been dropped for clarity. Note also in (2.12) that the Frdchet derivative of the eddy
viscosity was assumed to be zero, that is, Dut/D¢ = O. The latter approximation can

be justified for short time intervals; see Collis & Chang (1999). Moreover, this system of
equations is linear in the variables Ui and 7_, where 7> is the Frdchet derivative of the
pressure. Therefore it can be written in the form:

.40 = O, (2.14)

where A is the linear operator acting on tile vector O = (Hi,P)T. The linear system

(2.14) with unknown boundary conditions (2.13) cannot be solved directly; instead, an
adjoint operator, A*, is formulated by considering the equation

(AO,_} = (O,A*q2) +BT, (2.15)

where <-,.> stands for the inner product defined as the integral over the flow domain of

the dot product of the two vectors and _ is the adjoint state vector _2 = (qi, 7r)T. Finding
the adjoint operator, .A*, and the boundary terms, BT, is a straightforward exercise in

integrating by parts. The adjoint operator acting on the adjoint state vector, that is,
A*_ is defined by the equations:

-x_.+7_Jo_, o_j-o_---; (_,+u,) o_. o__ 1
: o_ + ax, ]]j (2.16)[ _At o__

Oxs

and the boundary terms are:

BT=At/fu=+l (Press + Conv + Visc) dxdz (2.17)

with

Press = T'T/2n - VnTr

Conv = 77iUiv.

Visc = -v_ qi \ Oyn + Oxi ) - IWi +\ Oy,, Ox_ ] "

From (2.14), the relation (2.15) defining the adjoint operator reduces to

<.A*9, e) = -BT.

(2.18)

(2.19)

2.4. Gradient estimate

We now have the liberty to choose boundary conditions and right-hand side terms for the

adjoint problem such that the relation (2.19) can be utilized to calculate the gradient of
ft. By comparing Eqs. (2.10), (2.17), (2.18) and (2.19), it appears that a judicious choice
for the definition of the adjoint problem is:

( _l_u nc #l_u' (1_ -- <72>) )

2 _26v, (v - <v>) (2.20)A'_ = _ aaa,o + #aaw,(w - (w))
0
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with boundary conditions at the wall:

07h = 0
7]l Vn -t- b'w-_y n

= 0 (2.21)
07]3

713v,_+ u_, Oy,_ = O.

In doing so, (2.19) can be re-written as:

DJ-
_b_dCj= _At f fy=± [n,$,, + $v + w3$w] dxdz

+A ¢-2¢"_ dxdz + ZT_ =+x
==[:1 i=1

Since (2.22) is valid for all directions (_, the gradient of J may be extracted:

D ff _ AtTI1, w + 2")'1 I

DJ At(_,. 2UW_y_) 272 2 4_-_¢p3 (2.22)0¢2 - - + --_-¢ +

Dfl _ Atr/a,w + 273 3
D_3 ---A-- ¢ '

where the subscript w stands for the values at the wall. A control procedure using a

simple steepest descent algorithm at each time step may now be proposed such that:

DJ(¢ '_+l'k) (2.23)
¢,+l,k+l = ¢_+1,k _ p D_

where the parameter # can be varied to change the rate of convergence and the extra

superscript k refers to the subiterations in the descent algorithm. Note that the adjoint

operator depends on the state vector (ui, p)T at time n + 1 so that the state equation
and the adjoint problem must be solved simultaneously to obtain the sub-optimal ap-

proximate boundary conditions. The adjoint problem (2.20) with boundary conditions

(2.21) is discretized and solved using the same numerics as the flow solver. Note that the

resulting gradient of the objective function is an approximation since the spatial terms

in (2.11) are assumed to be continuous, the gradient of the eddy viscosity, Dut/D¢, is
assumed to be zero, and we have omitted a term in (2.10). An exact adjoint problem

could be formulated from the fully discretized equations of state, but this is considerably

more difficult than the current approach. More details about the algorithm used to solve

the adjoint problem may be found in Nicoud et aI. (2000).

3. Results

3.1. Objective function for mean flow only

The first test is to see if the addition of the transpiration velocity control to the wall

stress controls results in an improvement of the prediction of the mean velocity profile. In

the following, the reference mean velocity profile is taken as u+ = 2.41 In y+ + 5.2. Thisref

version of the logarithmic law was suggested by P. Bradshaw (private communication)

for high Reynolds number flows. To test the influence of transpiration velocity only on
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transpiration; (.... ): control includes wall stresses only; (-----):
model of Piomelli et al. (1989); (........ ): logarithmic reference profile,

the mean velocity profile, the constants _3i in the objective function, (2.3), are set to
zero so that only the desired mean velocity profile is targeted. For this simulation the

parameters in the objective function (2.3) were: al = a3 = 1,/31 = /32 = /33 = 0, ?x =

"Y3 = 10 -4,'f2 = 0.02, and )_ = 0. The relaxation parameter in the steepest descent
algorithm was # = 103.

Figure 1 shows that, indeed, the addition of the transpiration control improves the

mean velocity profile slightly over the case when only wall stress controls are considered.

Also shown in Fig. 1 is the mean velocity profile obtained by using the simple wall stress
model of Piomelli et al. (1989) that correlates the streamwise wall stress to the streamwise

velocity at a point away from the wall and slightly downstream. The latter model yields

results that are typical of most current wall stress models for this flow configuration.

The improvement in the mean velocity profile is encouraging. However, Fig. 2 shows

the root mean square (rms) velocity fluctuations for the sub-optimal wall stress boundary
conditions with and without the addition of transpiration velocity control. The rms ve-

locity fluctuations actually increase with the addition of transpiration, which is certainly
in the wrong direction since the fluctuation intensities are already over-predicted.

3.2. Objective/unction including mean flow and rms velocities

In Nicoud et al. (2000) it was shown that sub-optimal wall stress boundary conditions

alone had little effect on the velocity fluctuation intensities even when the objective func-

tion included a component that targeted tile fluctuations. The addition of a transpiration
velocity control improves matters to some extent. For this simulation the parameters

in the objective function (2.3) were: al = a3 = 1,ill = f12 = /33 = 3 x 10-4,,_1 =
5 × 10-5,72 = 10-3 ,-/3 _-- 4 × 10 -6 and )_ = 5 × 10 -3. The relaxation parameter in the

steepest descent algorithm was # = 500 for ¢,,2 and 105 for ¢,,, and ¢l,3.

Figure 3 shows the rms velocities when the rms component is included in the objective
function. As illustrated in Fig. 3, the prediction of the rms velocities improves when the

transpiration velocity control is added; however, the streamwise rms velocity is still over-

predicted near the wall. Not shown for this simulation is the mean velocity profile, which
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FIGURE 2. Velocity fluctuation intensities with objective to control mean flow' only. (_):

control includes wall stresses and transpiration; ( .... ): control includes wall stresses only;

( ........ ): reference profiles of Kravchenko, Moin & Moser (1996).
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FIGURE 3. Velocity fluctuation intensities with objective to control mean flow" and rms velocities.

(_): control includes wall stresses and transpiration; ( .... ): control includes wall stresses

only; (........ ): reference profiles of Kravchenko, Moin &= Moser (1996).

in this case is not as good as the mean velocity profile that is achieved in the previous

section when only the mean velocity profile is targeted by the controls. If shown, it

would lie between the two mean velocity profiles in Fig. 1 corresponding to control by

wall stress only and control by wall stress plus transpiration velocity. Furthermore, the

region in which the improved predictions occur is limited to approximately the first three

grid cells adjacent to the wall.
The results of this simulation show that the prediction of velocity fluctuation inten-

sities can be improved by the addition of a wall-normal velocity approximate boundary

condition. But, the fact that the mean velocity profile is not as well predicted when the

velocity fluctuations are targeted through the objective function suggests that the objec-

tives of getting the correct mean velocity profile and the correct rms velocities may be

competing objectives.
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3.3. Validating the gradient o] the objective ]unction

The fact that there was not more improvement in the prediction of the objective profiles

with the addition of the transpiration velocity control might suggest that the approximate

gradient of the objective function is inaccurate. To validate the gradient computation,

finite difference approximations to the gradient were calculated. This is relatively simple
to do. Given a control vector ¢ and a velocity field u, choose a small value of e and

perturb the control vector at one point by the amount e (e.g. add e to r_ at one point
on the lower wall) to obtain a new control vector ¢ + e¢. Now advance the velocity field

one time step andexplicitly calculate the value of the objective function (2.3), that is,
calculate :7(¢ + e¢). The approximate gradient in the direction ¢ is then:

nJ - J(¢ + _) _ fl(¢)
(3.1)

By comparing the approximation (3.1) to a centered difference approximation, it was

found that e -= 10 -3 produces good approximations to the gradient. By successively
perturbing the control vector ¢ at every point, it is possible to approximate the entire

gradient Dff/D¢. This finite difference gradient approximation can then be compared
to the gradient approximated by the adjoint problem described above.

In the case when only wall stress boundary condition controls are used (as in Nicoud

et al. (2000)), it was found that the correlation between the two gradient approximations
was generally in excess of 90%. When the transpiration velocity control is considered in
addition to the wall stress controls as in the present work, it was found that the correlation

between the two gradient approximations was generally in excess of 80%, but in some

cases it was lower. Thus we are led to believe that the adjoint problem defined above

may be yielding satisfactory approximations to the gradient of the objective function, but

further work is necessary to determine if the gradient approximation can be improved.

3.4. Is there a simple, linear, general model?

In Nicoud et al. (2000) the data from the sub-optimally controlled simulation at Rer =

4000 in which the wall stresses were used as control was used to derive a simple, linear

model to predict the wall stresses from the local velocity field. In short, linear regression
was used to find the localized convolution coefficients for the velocity field that best

predicted the wall stresses in a least squares sense. This procedure yielded a wall stress
model that was inexpensive to compute and accurately reproduced the results of the sub-

optimally controlled simulation. Furthermore, this same linear model was able to yield

similarly good predictions of the mean velocity profile for Reynolds numbers ranging

from Re_ = 180 to Re_ -- 20000 when the same grid was used as for the sub-optimally
controlled simulation. Even when the grid was refined by the same amount in each

direction so that the aspect ratio of the grid remained unchanged, the same linear model

continued to produce good results. Further details about the derivation of this wall model
can be found in Nicoud et al. (2000).

Unfortunately, as we show here, this simple linear model is not going to be a panacea.
Figure 4 shows the mean velocity profiles for several channel flow LES's at Re_ = 4000

all using the same number of grid points as the simulations discussed above and using
the simple linear wall stress model derived in Nicoud et al. (2000). In each case some

reasonable modification has been made. For instance, a fully conservative fourth order

finite difference scheme was used, and, as shown in the figure, the mean-velocity is under-
predicted. To test the effects of the numerics on the efficacy of the wall model, two
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FmURE 4. Mean velocity profiles using fixed, simple linear model for the wall stresses derived
in Nicoud et al. (2000). (...... ): logarithmic reference profile, u+ = 2.41 lny + + 5.2; (_):•" ref

model reproduces mean profile when used in same setting that it was derived; (.... ): same
model with fourth-order finite differences; (--'--): same model with modified dynamic proce-
dure as in Cabot & Moin (2000); ('- o -" ): same model with stretched wall-normal grid.

different things were tried: stretching the grid in the wall-normal direction and modifying

the dynamic procedure as suggested by Cabot & Moin (2000). As Figure 4 shows, the

simple linear wall stress model performs worse in every one of these cases than in the

original simulation for which it was designed.

4. Discussion

It was expected that the addition of the transpiration velocity control would allow
the wall model to influence a larger fraction of tile flow domain than when using wall

stress controls alone. This expectation is is due to two suppositions: 1) a transpiration

velocity boundary condition directly effects the entire flow domain through the continuity

equation, and 2) the transpiration velocity control should enhance the level resolved
turbulence in the near-wall cells leading to less reliance on the inaccurate Smagorinsky

SGS model. However, the addition of the transpiration velocity control, while improving

matters, does not completely fix everything.
It seems unlikely that approximate boundary condition wall models can do much bet-

ter than those produced by these sub-optimally controlled simulations (of course, there

is still some room to improve the simulations in this work by finding better gradient ap-

proximations and exploring other combinations of parameters). There are other culprits
at work here, however; for instance, the Smagorinsky SGS model is known to be unable

to correctly predict the subgrid-scale stresses in the logarithmic region at this coarse

resolution (Baggett, Jim6nez & Kravchenko (1997)). Further efforts to solve the problem

of approximate boundary conditions for LES need to be made in tandem with improving

the subgrid-scale model in the anisotropic logarithmic region. The only alternative is to
start the LES computation at some plane parallel to the wall beyond which the LES can
be trusted. In that case, the boundary conditions for all the velocity components need

to be supplied in the interior of the turbulent flow, and that problem has been shown to

be extremely difficult; see Cabot & Moin (2000) for a review of some of these attempts

at finding "off-wall" boundary conditions.
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The simple, linear, wall stress model derived in Nicoud et al. (2000) was shown not
to be robust to changes in the numerical scheme and/or the SGS model. It therefore

seems unlikely that any single, explicitly defined simple model is unlikely to work in the

variety of flows necessary to make it useful as a predictive tool for LES. Perhaps a more

promising direction is to employ some kind of online optimization or control to force

the LES solution near the computational boundaries to match an adaptively computed

RANS solution. To this end, B. Mohammadi has proposed a new generalized objective
function that would allow the use of more general non-parallel reference velocity profiles
by targeting the tangential velocities:

with

and

+ 1Jmean,i(u; ¢) = (6_,(y)2 + 6t (y)) dy,
1

1
5,,,(Y) = _ / /(ut - Ut,ref)dxdz

(4.1)

(4.2)

1//6t(y) = _ tlF- _reflldxdz (4.3)

where ut = ft. i'is the tangential (to the wall) velocity component. Preliminary computa-
tions of the gradient of this objective function by finite difference approximations show

that the gradients of this new objective function are very different than those of (2.3).
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Computation of trailing edge noise from an
incompressible flow calculation

By Assad A. Oberai_ AND M. Wang

A new inethodology for calculating low Mach number trailing edge noise is developed and

tested. The input to this methodology is the fluctuating surface pressure obtained from

an incompressible, turbulent flow calculation. The surface pressure is used to calculate

an intermediate incident pressure. This pressure in conjunction with tile sound-hard

boundary condition yields the scattered pressure which accounts for the effect of the

rigid airfoil. Through numerical experiments it is found that the proposed methodology
is sensitive to noise in the data. Modifications that circumvent this sensitivity are under

consideration.

1. Introduction

The purpose of this study is to compute noise generated by turbulent flow over a lifting
surface. It is well known that if the Math number is small then such problems can be

solved using Lighthill's acoustic analogy (see Lighthill (1954)) as a starting point. In the

frequency domain, Lighthill's analogy requires the solution of the Helmholtz equation
to obtain a correction to the pressure. In the near field, this correctmn contains both

hydrodynamic and acoustic components of pressure, whereas in the far field, it reduces

to the acoustic pressure.
In particular, we wish to extend and apply the formulation developed in Oberai &

Hughes (2000). In that study, the authors split pressure into an incident part and a
scattered part. The incident field contains noise generated by fluid flow in the absence of

the airfoil. The scattered field accounts for the effect of the rigid airfoil and is determined

by applying the sound hard condition on the surface of the airfoil. This approach is akin
to the works of Crighton & Leppington (1971), Chandiramani (1973), Chase (1971) and

Howe (1998), among others. The distinguishing feature of the approach used in Oberai

& Hughes (2000) and incorporated in our formulation is the numerical computation of
the scattered field. This allows us to account for the effect of the geometry of the airfoil

accurately, in particular, to model the effect of the finite chord on pressure directivity

and scaling.
The work done in Oberai & Hughes (2000) was based on the vortex sound theory and

was applied to the case where noise sources in the fluid were idealized as frozen vortices
that are convected past the airfoil. In this study we consider the development of this

methodology in the context of Lighthill's acoustic analogy and apply it to the case where
the sources are determined from an incompressible, turbulent calculation. The calculation

we have used for this purpose is the large-eddy simulation of turbulent flow over a wedge.

The details of this calculation are provided in Wang & Moin (2000).

The layout of this manuscript is as follows: In Section 2, we develop the methodology

t Division of Mechanics and Computation, Stanford University
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to compute noise in a general setting. In Section 3, we describe the specific steps involved

in applying this methodology to our problem. In Section 4, we present numerical results,
and we end with conclusions in Section 5.

2. Derivation of the methodology

We begin with time-harmonic version of Lighthill's analogy for a given non-dimensional

frequency a_. This equation is valid in the fluid domain _l, exterior to a rigid structure
denoted by f_s, with a wet boundary denoted by Fs.

-v2f- k2f = v. (v. _) in _I (2.1)

ViS- n = 0 on Fs (2.2)

lira r(/?,r - ik#) = 0 (2.3)F---_ OO

In the above equations, p denotes pressure-like variable that reduces to the acoustic

pressure in the far-field, k = tom is the wavenumber, M = U/Co is the Mach number,
where U is the fi'ee-stream velocity, and Co is the speed of sound in the undisturbed
ambient medium. Tile sign-over a quantity indicates its Fourier transform in time. In

solving (2.1) through (2.3), it is assumed that Lighthill's turbulence tensor T is known.

For our case, T is determined by solving the incompressible, Navier-Stokes equations and
is given by:

Tij = uiuj (2.4)

where ui is the fluid velocity in the ith direction. Equation (2.2) is the sound hard condi-

tion applied on the surface of the airfoil denoted by F_. Equation (2.3) is the Sommerfeld

condition that requires all waves to be outgoing at infinity. Throughout this paper all vari-
ables are assumed to be non-dimensional. Spatial coordinates x are non-dimensionalized

by L, a suitably chosen length parameter. Time t is non-dimensionalized by U/L. Den-
sity p is non-dimensionalized by poo, its reference value in the undisturbed ambient fluid.
Pressure is non-dimensionalized by the quantity Poo U 2.

Following the development in Oberai & Hughes (2000), we split the pressure p in the
above equation into an "incident" part denoted by Pt and a "scattered" part denoted

by Ps. The incident part is determined by replacing the rigid airfoil by the undisturbed
ambient fluid. The equations that determine PI are:

-V2i51 - k215_ = V. (V. I") in f_i U f_ (2.5)

lim r(Dl,r - ikDl) = 0 (2.6)r ---_ oo

The equations for the scattered part of the pressure may be determined by subtracting
the equations for the incident pressure from the equations for the total pressure. These
are given by

-V2_Ss - k2_s = 0 in ftf (2.7)

V/Ss • n = -V/51 • n on I'_ (2.8)

lim r(fis,_ - ik_s) = 0 (2.9)F---_ OO

Note that the equations for the scattered pressure are driven only by the normal derivative
of the incident pressure on F_ and do not involve any variables from the fluid calculation.
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It is well known u_a_ tot the _raiiing-e(lgc problem tile incident pressure which rep-

resents the noise generated by quadrupoles in free space contributes very little to the

far-field noise. In fact, it has been established that (see Crighton g: Leppington (1971)

for example),

fPsl × o(_I) _ >>l (2.10)

where k is the acoustic wavelength and l is the chord length of the airfoil. Thus for

small M, the contribution from the incident pressure may be neglected. In that case, we

require the incident pressure only on the surface of the airfoil to calculate the scattered

pressure. For the case when the acoustic sources are less than a fraction of a wavelength

away from the trailing-edge, we may treat the calculation of the incident pressure to be

incompressible. This amounts to setting k = 0 in (2.5) and (2.6). This approximation
allows us to express the incident pressure in terms of the the surface pressure Pl obtained

from the incompressible flow calculation. This derivation is described in the following

paragraph.

Let G(x, y) be the free space Green's function for the Laplacian in three dimensions.

Then for k = 0 in (2.5) we have,

pl(X) _-- -- _1U f_' G(x,y) V' (V' T(y)) dfl (2.11)

= - £ G(x,y) V- (V. T(y)) dfl (2.12)
1

=/n C(x,y) V2y pI(Y) df_ (2.13)
I

= Vy G(x,y) pl(y) dFl
1

+fro (_G(x,y),,_p/(y)+G(x,y)py,n(y)) dF (2.14)

=p/(x)+ fr, (_G(x,y),,,_pl(y)+Re-lG(x,y)un,,_,_) dF (2.15,

_ p.f(x)- fr G(x'Y)'m' PI(Y)dr (2.16)

To arrive at (2.13) from (2.12) In the above derivation, we have made use of the pressure-

Poisson equation satisfied by the fluid pressure Pl in an incompressible calculation. To

arrive at (2.14) from (2.13), we have used Green's formula (see Courant & Hilbert(1989)

page 252.) To arrive at (2.15) from (2.14), we have made use of the fact that Pl,n =

Re-lu,_ ,n,_, on the surface of the airfoil. This expression can be derived from momentum

equation in the wall normal direction and the continuity equation. Finally, to arrive at

(2.16), we have assumed that Re is sufficiently large such that the second term in the

surface integral in (2.15) may be neglected.

Taking the normal derivative of the incident pressure in (2.16),taking the limit when

x approaches the surface of the airfoil, and making use of the fact that 15I,n may be

neglected once again, we arrive at the following convenient expression for the normal
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Y:

YJ

FIGURE 1. Cross-sectional view of the model airfoil.

derivative of the incident pressure:

fr G(x,y),.. n, pf(y) dr (2.17)Vpl(x)- n

m

Equation (2.17) in conjunction with Eqs. (2.7)-(2.9) defines a complete set of equations

that need to be solved to determine the far-field acoustic pressure. It is noteworthy that
the only input to these equations from the fluid calculation is the knowledge of the surface
pressure.

3. Implementation of the proposed methodology

The methodology derived in the previous section involves two steps. The first is the

calculation of the normal derivative of the incident pressure using (2.17), and the second

is the calculation of the scattered field, obtained by solving (2.7) through (2.9). In this
section we describe how these calculations are performed.

3.1. Calculation of the incident pressure

The cross-sectional view of the model airfoil is shown in Fig. 1 In the figure and the

following development, subscript 1 denotes the stream-wise direction, subscript 3 denotes

the span-wise direction, and subscript 2 denotes the direction normal to the flat portion

of the upper surface of the wedge. The surface of the wedge is denoted by Fs. Since the

airfoil is assumed to be infinite in the span-wise extent in the flow calculation, we have

F, = Fs x (-_c, _c), where F, is a curve in the Y3 = 0 plane. The free-space Green's

function for the Laplacian in three dimensions denoted by G is given by:

1 1

G(x,y) - 4_r Ix - Yl (3.1)

The calculation of the normal derivative of the incident pressure on F, involves using
(3.1) in (2.17) and evaluating the surface integral for each point x. This calculation can

be simplified if we take into account the fact that all variables in the fluid calculation,
including the surface pressure, can be expressed as:

N/2

j=-N/2+I

= E/_f e'k'y3 (3.2)
ka

where L: is the size of the computational domain in the span-wise direction.
Using (3.1) and (3.2) in (2.17) we arrive at

/)l,n = Z g oo( f, - /2) P! e ikaya dy3 dyldy2
k3



where

Now letting
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_ f'xD cikaYa \-= E _1_-p$ (fl _ 3t_k:l_'::dy3 - f2r5 _ -_ dy3)dyldy2 (3.3)
k3

r 2 = (Xl -yl) 2 + (x2-y2) 2+(x3-y3) 2

+(x2 - y2)(xl - Yl)nx2nyl + (x2 - y2)(x2 - Y2)nx2ny2

f2 = l_xl Ttyl -_- nxJlY2

_2 : (Xl -- yl) 2 + (X2 -- y2) 2 , Y3 = Y3 -- X3

in (3.3) we have

^ ik3Y3

Pl,n = 2_, pl,ne
k3

27c -

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

e-- oc (if2 + _32)5/2 dy3

eikS_3 d-
f22 _z (_2 + _2)3/2 Y3] dyldy2 (3.9)

Evaluating the integral in the _)3 direction (see Gradshteyn & Ryzhik(1994)) we get

7)1,,_ = _ _ k3 = 0

where K,_(z) is the modified Bessel function of order n (see Abramowitz & Stegun (1970),

pg. 374). Equations (3.10) and (3.8) are the expressions used to evaluate the normal
derivative of the pressure field. Through the use of a Fourier transform in the Ya direction,
we have transformed the surface integral in (2.17) to a line integral for each k3 in (3.10).

3.2. Evaluation of the scattered field

Once the incident field is known, it remains to solve Eqs. (2.7) through (2.9) to determine

the scattered field. To solve these equations we write an equivalent weak formulation for

the problem, given by: Find Ps C $ = Hl(f_a), such that

(Vw, V_Ss) - k2(w,Ps) - (w,M(_s))ro =- -(w, VISI- n)r,,Vw e $ (3.11)

In the above equation the inner product (., .) is defined as

(w,u) _ ff_ w*udw (3.12)
a

where _t_ is the bounded domain obtained by truncating the unbounded fluid domain ftf

at the surface F_. The Euler-Lagrange equations a_ssociated with (3.11) are the Helmholtz

equation (2.7), the boundary condition on F_ (2.8), and the following boundary condition

on Fa

V_S . n = M(fgs) (3.13)
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FIGURE ,'2.Finite element mesh on the
truncating surface,

FIGURE 3. Finite element mesh through the
mid-span.

In this example we choose F, to be a sphere and M to be the exact Dirichlet to Neu-

mann (DtN) map (see Grote & Keller (1995)) that renders (3.11) equivalent to (2.7)
through (2.9). _,'_%solve (3.11) using a Galerkin approximation and the finite element
discretization.

4. Numerical results and discussion

The time-history of surface pressure obtained from the fluid calculation was split into

8 windows of equal length (see Wang & Moin (2000) for details on the fluid calculation).
Data for each of these windows was then Fourier transformed in time to obtain the

surface pressure distribution for each fl'equency w. Each of these sets were further Fourier

transformed in the Y3 direction, and (3.10) was used to evaluate tile contribution of each

mode (k_) to the incident pressure. The contribution from all of the modes was then

summed using using an inverse Fourier transform (3.8) to obtain/_1,n.

To calculate the scattered pressure field, (3.11) was solved using a Galerkin approxi-

mation and finite element discretization. The truncating boundary for the acoustic cal-
culation denoted by F_ was chosen to be a sphere of radius 12.5 units. On this surface the

truncated modified DtN map (Grote & Keller (1995)) was applied. The acoustic domain

completely encloses the wedge whose chord length is 21.5 units. The details of the geom-
etry of the wedge are described in Wang & Moin (2000). For the acoustic calculation the

span-wise length of the wedge was chosen to be 4 units. The incident surface pressure

was applied on a strip of width L: = 0.5 units in the span-wise direction, centered along
the mid-span of the wedge. In the LES calculation only the part of the wedge 8 units
upstream from the trailing edge was modeled. Thus surface pressure data was available

for only this portion. To account for this in the acoustic calculation, starting from a
location 4.5 units upstream of the trailing edge,/51,n was linearly scaled down to zero at
8 units from the trailing edge.

The resulting linear system of equations was solved using the QMR algorithm in con-

junction with the SSOR preconditioner, with the special matrix-vector product algo-
rithms described in Oberai, Malhotra, & Pinsky (1998). We employed 761,017 tetrahedral
finite elements to model the acoustic domain. This corresponds to 147,036 unknowns. The

surface mesh on the truncating surface is shown in Fig. 2, and the finite element mesh

though the mid-plane of the wedge is shown in 3. In this figure we observe the clustering
of the mesh near the surface of the airfoil to resolve the incident pressure field.
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FIGURE 4. Real part of the solution for
w = 3.376.

FIGURE 5. Real part of the solution for
w = 20.28.

The problem of trailing edge noise shows an interesting behavior with the variation
of the ratio of the acoustic wavelength to the chord length (Aft.) In the low frequency

regime )_/l >> 1, the far-field pressure direetivity is like that of a dipole, and the scaling
of non-dimensional pressure (non-dimensionalized by p_U 2) intensity with the Mach

number is of order M 2. In the high frequency regime, )_/l << 1, tile far-field pressure

directivity is like that of a cardioid, and the scaling of pressure intensity is of order 5I 1•

In Oberai & Hughes (2000), using an approach analogous to the one developed herein,

the authors were able to recover these two theoretical extremes and also shed light on the

intermediate range of frequencies. However, in that study the authors modeled the noise

sources as idealized linc vortices and derived an analytical expression for the incident

pressure field for the acoustic calculation. It is one of the goals of this study to validate

the applicability of this approach for the case when the flow field and hence the noise
sources are obtained from a LES of turbulent flow. Through extensive numerical tests we

have found the numerical noise in the data from the turbulent calculation is sufficient to

corrupt the behavior of the solution substantially, and the approach described above may
lead to erroneous results. We base our conclusion on the unphysical far-field directivity

pattern obtained for some test cases and, more quantitatively, on the incorrect scaling of

pressure intensity with Mach number obtained for most test cases.
First, we present results for a fixed Maeh number (M = 0.088) at two frequencies

(w = 3.376&20.28.) The real part of the solution for these cases is shown in Figs. 4 and

5, and the imaginary parts of the solution are shown in Figs. 6 and 7. The corresponding
far-field directivity patterns are shown in Figs. 8 and 9. \Vhile these pictures appear

reasonable, at least qualitatively, it is difficult to draw any definitive conclusions from

them.
To assess whether the proposed approach captures the characteristics of the trailing

edge problem, we examine the variation of total far-field acoustic intensity (_ with the

Mach number. We define the total acoustic intensity as

q;= lira [ IPsl2 dr (4.1)
R--+o+,Jl'n

It, can be easily verified that this quantity tends to a constant value in the limit R _ oc
and that in the low frequency regime )_ >> l it varies with Math number as 0 = O(M2),

while in the high frequency regime h << l it varies as 0 = O(M1). In Fig. 10, for a

given frequency w = 10.14, we have plotted 0 as a function of Math number. In this
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FIGURE 6. hnaginary part of the solution for FiGURF, 7. Imaginary part of the solution for
oJ = 3.376. oJ = 20.28.
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FIGURE 8. Far-field pressure directivity for
= 3.376.
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FIGURE 9. Far-field pressure directivity for
_o = 20.28.

plot M E (0.026, 0.158), which corresponds to I/A C (0.89, 5.3). In this regime we would

expect ¢ = O(MX), associated with a cardioid-like directivity. However, from tile plot
we observe that ¢ = O(M°), which is the scaling for a monopole source. This indicates

the inability of the proposed approach to solve the problem accurately.

This shortcoming can be understood analytically by applying the proposed approach

to a simplified problem. Consider the noise produced by a distribution of quadrupole

sources above a rigid infinite plate. Let the position of the plate be given by Y2 = 0. The

solution to this problem is the sum of the noise produced in free space by the quadrupoles

above the plate and the noise produced by a fictitious distribution obtained by mirroring
the original sources about Y2 = 0. It can be easily shown (see Goldstein (1976)) that for

compact acoustic sources L << A, the intensity of noise scales as o(m4). To solve this
problem using the approach dew, loped in this paper, we would first calculate the incident

pressure/)t,n associated with the given distribution of quadrupoles. Thereafter, we would
calculate the scattered field given by:

fr Gs(x,y)/)t,,_(y)dF (4.2) s(x)

In the above integral Gs is the sound-hard Green's fimction. For the infinite plate, using



Computation o] trailing edge noise from an incompressible flow calculation 351
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F1GURE 10. Total far-field acoustic intensity _ as a function of Mach number M, for w = 10.14.

the method of images, this is given by

1 (e iklx-yl eiMx-Y'l
GS(x,y) : _ \ ]-__--_-_ + [x- y'---------_) (4.3)

where y' - [Yl,-Y2, Y3] T. Using this expression in (4.2) and evaluating the integral for
an observation point in the far-field and a compact acoustic source around the origin, we

get:

1 e iklxl fr/_s(x) _ 2--_ Ix---_-x _Sr,n(y)dF

O(M °) x fr _t,n(y)dr (4.4)
a

For this result to have the correct behavior with Mach number (i.e. O(M4)), the integral

in (4.4) must behave as O(M4). For acoustic sources obtained from an incompressible flow
calculation, _5i,_ has no Mach number dependence, and the best case scenario is given by

the case when the integral in the above equation vanishes. For turbulent flow calculations
it is unreasonable to expect that _5i,n can be determined with sufficient accuracy for this

to happen. Therefore, we can expect the proposed formulation to yield results consistent

with the presence of spurious monopoles while the true solution precludes their possibility.

This is precisely what is observed in Fig. 9.

5. Conclusions

We have developed and implemented a formulation to calculate noise generated by low-

Mach number flows. The advantages of this approach are that in the acoustic problem

it accounts for the geometry of the structure accurately and requires only the surface

pressure from an incompressible fluid calculation. We have applied this methodology to

compute the noise generated by a turbulent flow over a trailing edge. We have found
that this approach is not robust enough to provide accurate results with pressure data

obtained from turbulent calculations. This is attributed to the fact that in calculating

the scattered field, all sources are treated as monopole sources. Therefore, to accurately

predict noise that has higher-order nmltipole components, the incident pressure needs to
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be evaluated extremely accurately so that cancellations may lead to the right acoustic

coinponent. For the problem solved in this study, we have found that this is not the case.

To overcome this drawback it seems natural to work with an approach that takes as

input sources of the highest multipole order in the solution (quadrupoles for our case.)

One such approach is to solve the weak form of Lighthill's equations (2.1) through (2.3).
This has been done in Oberai, Roknaldin & Hughes (2000), where the authors were able

to reproduce the dipole character of the acoustic solution for the low frequency case. As

a contiuuation of this study, we will explore the applicability of this approach to our
probleuL
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